Properties of Least Squares Estimators Simple Linear Regression Model: Y = Β 0 + Β1x + Ε • Ε Is the Random Error So Y Is A

Properties of Least Squares Estimators Simple Linear Regression Model: Y = Β 0 + Β1x + Ε • Ε Is the Random Error So Y Is A

Properties of Least Squares Estimators Simple Linear Regression Model: Y = β0 + β1x + is the random error so Y is a random variable too. • Sample: (x1;Y1); (x2;Y2);:::; (xn;Yn) Each (xi;Yi) satisfies Yi = β0 + β1xi + i Least Squares Estimators: n ^ i=1(xi x)(Yi Y ) ^ ^ β1 = P n − −2 ; β0 = Y β1x (xi x) − Pi=1 − 1 Properties of Least Squares Estimators Assumptions on the Random Error E[i] = 0 • 2 V (i) = σ • Implications for the Response Variable Y E[Yi] = β0 + β1xi • 2 V (Yi) = σ • What can be said about: ^ E[β1]? • ^ V (β1)? • ^ E[β0]? • ^ V (β0)? • ^ ^ Cov(β0; β1)? • 2 Properties of Least Squares Estimators ^ ^ Proposition: The estimators β0 and β1 are unbiased; that is, ^ ^ E[β0] = β0;E[β1] = β1: Proof: n ^ i=1(xi x)(Yi Y ) β1 = P n − −2 (xi x) Pi=1 − n n i=1(xi x)Yi Y i=1(xi x) = P − n − P2 − (xi x) Pi=1 − n i=1(xi x)Yi = P n − 2 (xi x) Pi=1 − 3 Thus n ^ (xi x) E[β1] = n − 2 E[Yi] X (xi x) i=1 Pi=1 − n (xi x) = n − 2 (β0 + β1xi) X (xi x) i=1 Pi=1 − n n i=1(xi x) i=1(xi x)xi = Pn − 2 β0 + β1P n − 2 (xi x) (xi x) Pi=1 − Pi=1 − ^ ^ E[β0] = E[Y β1x] − 1 n = E[Y ] E[β^ ]x n X i 1 i=1 − 1 n 1 n = (β + β x ) β x n X 0 1 i 1n X i i=1 − i=1 4 Properties of Least Squares Estimators ^ ^ Proposition: The variances of β0 and β1 are: 2 n 2 2 n 2 ^ σ i=1 xi σ i=1 xi V (β0) = n P 2 = P (xi x) Sxx Pi=1 − and 2 2 ^ σ σ V (β1) = n 2 = : (xi x) Sxx Pi=1 − Proof: n ^ i=1(xi x)Yi V (β1) = V P − Sxx 2 n 1 2 = (xi x) V (Yi) S X xx i=1 − 2 n 1 2 2 = (xi x) ! σ S X xx i=1 − 1 = σ2 Sxx 5 ^ ^ V (β0) = V (Y β1x) − ^ ^ = V (Y ) + V ( β1x) + 2Cov(Y; xβ1) − − 2 ^ ^ = V (Y ) + x V (β1) 2xCov(Y; β1) − 2 2 σ 2 σ ^ = + x 2xCov(Y; β1) n Sxx − Now let's evaluate the covariance term: n n 0 1 xj x 1 Cov(Y; β^ ) = Cov Y ; − Y 1 X n i X S j @ i=1 j=1 xx A n n xj x = − Cov(Y ;Y ) X X nS i j i=1 j=1 xx n xi x = − σ2 + 0 X nS i=1 xx = 0 6 Thus 2 2 ^ σ 2 σ V (β0) = + x n Sxx S + nx2 = σ2 xx nSxx n 2 2 (xi x) + nx = σ2 Pi=1 − nSxx n 2 2 2 (x 2xxi + x ) + nx = σ2 Pi=1 i − nSxx n x2 = σ2 Pi=1 i nSxx 7 Properties of Least Squares Estimators A Practical Matter The variance σ2 of the random error is usually not known. So it is necessary to esti- mate it. Proposition: The estimator n 2 1 2 1 S = (Yi Y^i) = SSE n 2 X − n 2 − i=1 − is an unbiased estimator of σ2. 8 Properties of Least Squares Estimators Assumptions on the Random Error E[i] = 0 • 2 V (i) = σ • Each i is normally distributed. • Implications for the Estimators ^ β1 is normally distributed with mean β1 and variance 2 • σ ; Sxx ^ β0 is normally distributed with mean β0 and variance n 2 • 2 i=1 x σ P i ; nSxx (n 2)S2 2 −σ2 has a χ distribution with n 2 degrees of free- • dom; − 2 ^ ^ S is independent of β0 and β1. • 9 Properties of Least Squares Estimators Multiple Linear Regression Model: Y = β0 + β1x1 + + βkxk + ··· Sample: (x11; x12; : : : ; x1k;Y1) (x21; x22; : : : ; x2k;Y2) . (xn1; xn2; : : : ; xnk;Yn) Each (xi;Yi) satisfies Yi = β0+β1xi+ +βkxk+i ··· Least Squares Estimators: 1 β^ = (X0X)− X0Y 10 Properties of Least Squares Estimators ^ ^ Each βi is an unbiased estimator of βi: E[βi] = βi; • ^ 2 V (βi) = ciiσ , where cii is the element in the ith row • 1 and ith column of (X0X)− ; ^ ^ 2 Cov(βi; βi) = cijσ ; • The estimator • ^ SSE Y0Y β0X0Y S2 = = − n (k + 1) n (k + 1) − − is an unbiased estimator of σ2. 11 Properties of Least Squares Estimators When is normally distributed, ^ Each βi is normally distributed; • The random variable • (n (k + 1))S2 − σ2 has a χ2 distribution with n (k +1) degrees of freee- dom; − 2 ^ The statistics S and βi, i = 0; 1; : : : ; k, are indepen- • dent. 12.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    12 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us