Engine Optimized Turbine Design

Engine Optimized Turbine Design

Engine Optimized Turbine Design Nicholas Anton Doctoral Thesis KTH Royal Institute of Technology Department of Machine Design SE -100 44 Stockholm Sweden TRITA -ITM -AVL 2019:14 ISBN 978 -91 -7873 -166 -4 Akademisk avhandling som med tillstånd av KTH i Stockholm framlägges till offentlig granskning för avläggande a v teknisk dokto rsexamen torsdagen den 16:e maj. 2 Abstract The focus on our environment has never been as great as it is today. The impact of global warming and emissions from combustion processes become increasingly more evident with growing concerns among the world’s inhabitants. The consequences of extreme weather events, rising sea levels, urban air quality, etc. create a desperate need for immediate action. A major contributor to the cause of these effects is the transportation sector, a sector that relies heavily on the internal combustion engine and fossil fuels. The heavy-duty segment of the transportation sector is a major consumer of oil and is responsible for a large proportion of emissions. The global community has agreed on multiple levels to reduce the effect of man-made emissions into the atmosphere. Legislation for future reductions and, ultimately, a totally fossil-free society is on the agenda for many industrialized countries and an increasing number of emerging economies. Improvements of the internal combustion engine will be of importance in order to effectively reduce emissions from the transportation sector both presently and in the future. The primary focus of these improvements is undoubtedly in the field of engine efficiency. The gas exchange system is of major importance in this respect. The inlet and exhaust flows as the cylinder is emptied and filled will significantly influence the pumping work of the engine. At the center of the gas exchange system is the turbocharger. The turbine stage of the turbocharger can utilize the energy in the exhaust flow by expanding the exhaust gases in order to power the compressor stage of the turbocharger. If turbocharger components can operate at high efficiency, it is possible to achieve high engine efficiency and low fuel consumption. Low exhaust pressure during the exhaust stroke combined with high pressure at the induction stroke results in favorable pumping work. For the process to work, a systems-based approach is required as the turbocharger is only one component of the engine and gas exchange system. In this thesis, the implications of turbocharger turbine stage design with regards to exhaust energy utilization have been extensively studied. Emphasis has been placed on the turbine stage in a systems context with regards to engine performance and the influence of exhaust system components. The most commonly used turbine stage in turbochargers, the radial turbine, is associated with inherent limitations in the context of exhaust energy utilization. Primarily, turbine stage design constraints result in low efficiency in the pulsating exhaust flow, which impairs the gas exchange process. Gas stand and numerical evaluation of the common twin scroll radial turbine stage highlighted low efficiency levels at high loadings. For a pulse-turbocharged engine with low exhaust manifold volume, the majority of extracted work by the turbine will occur at high loadings, far from the optimum efficiency point for radial turbines. In order for the relevant conditions to be assessed with regards to turbine operation, the entire exhaust pulse must be considered in detail. Averaged conditions will not capture the variability in energy content of the exhaust pulse important for exhaust energy utilization. Modification of the radial turbine stage design in order to improve performance is very difficult to achieve. Typical re-sizing with modifying tip diameter and trim are not adequate for altering turbine operation into high efficiency regions at the energetic exhaust pulse peak. The axial turbine type is an alternative as a turbocharger turbine stage for a pulse-turbocharged engine. The axial turbine stage design can allow for high utilization of exhaust energy with minimal pressure interference in the gas exchange process; a combination which has been shown to result in engine efficiency improvements compared to state-of-the-art radial turbine stages. Keywords: Turbocharger, Heavy-duty, Turbine, Axial, Radial 3 Sammanfattning I takt med att konsekvenserna av global uppvärmning blir allt tydligare så har människans sätt att leva och verka börjat ifrågasättas allt mer. Samhällsdebatten och det politiska klimatet präglas av en allt större oro inför effekterna på vår miljö i framtiden. Stigande havsnivåer, extrema värdeomslag och bristande luftkvalité i städer är några exempel på följder som påverkar hela världens befolkning. I synnerhet har utsläppen från förbränningsprocesser hamnat i fokus och identifierats som en starkt bidragande orsak till global uppvärmning. Transportsektorn, en sektor som till stor del är beroende utav förbränningsmotorn och fossila bränslen står för en betydande andel av dessa utsläpp. Initiativ har skapats på global nivå för att minimera konsekvenserna utav global uppvärmning. Kontinuerliga utsläppsminskningar har föreslagits, med målet att till sist bli helt fri från fossila bränslen. Inte bara industrialiserade länder har antagit denna typ utav åtgärder, utan även ett växande antal utvecklingsländer. Förbättringar utav förbränningsmotorn är utav största vikt för att effektivt begränsa utsläppen från både dagens och framtidens fordonsflotta. Fokus för dessa är utan tvekan att höja motorns verkningsgrad. Gasväxlingssystemet har en stor inverkan på motorns prestanda och därmed stor potential att bidra till en ökad verkningsgrad. Gasflödet in och ut ur motorns cylindrar kommer att påverka pumparbetet vilken är starkt kopplad till motorns verkningsgrad. Turboöverladdaren är den huvudsakliga komponenten i gasväxlingssystemet. Energin i avgaserna kan tillvaratas genom att expandera avgaserna i turboöverladdarens turbinsteg för att driva turboöverladdarens kompressorsteg. Om turboöverladdarens komponenter uppnår hög verkningsgrad kan i sin tur motorns verkningsgrad höjas vilket resulterar i låg bränsleförbrukning och låga utsläpp. Högt insugstryck under insugsfasen och lågt avgasmottryck under avgasfasen leder till ett positivt bidrag till pumparbetet. För att uppnå detta måste man se turboöverladdaren ur ett systemperspektiv då den endast är en del utav motorns gasväxlingssystem. I denna avhandling har inverkan av turboöverladdarens turbindesign studerats i relation till att nyttja energin i avgaserna via turbinsteget. Vikt har lagts vid att betrakta turbinsteget som en del av ”systemet” motor och påverkan på motorns prestanda liksom interaktionen med komponenter i avgassystemet. Den vanligaste typen utav turbinsteg i turboöverladdare är radialturbinen. Denna har visat sig vara begränsad med avseende på att tillvarata energin i avgaserna. Primärt så resulterar begränsningar av turbindesignen i en låg verkningsgrad i det pulserande avgasflödet vilket försämrar gasväxlingsprestandan. Rigg-prov i gas stand och numerisk utvärderingen utav ”twin scroll”-typen har tydligt påvisat låg verkningsgrad vid hög turbinbelastning. För en pulsöverladdad motor sker merparten utav energiomvandlingen till turbinarbete vid hög turbinbelastning, långt ifrån optimalt med avseende på radialturbinens karaktär. För att kunna analysera turbinens driftområde måste hänsyn tas till hela avgaspulsens omfång. Att studera medelvärdesbildad data kommer inte att fånga de kraftiga variationerna i avgaspulsens energiinnehåll vilka är utav största vikt för att tillvarata energin. Att modifiera radialturbinens design för att förbättra dess verkningsgrad i pulserande flöde är svårt. Typiska ändringar såsom att variera turbinens inloppsdiameter eller utloppsarea är inte tillräckliga för att uppnå hög verkningsgrad då avgaspulsens energiinnehåll når höga nivåer. Axialturbinen är ett alternativ till radialturbinen i turboöverladdare för pulsöverladdade motorer. Denna typ av turbin medger hög verkningsgrad i kombination med minimal tryckinterferens. Kombinationen har visat sig förbättra motorns verkningsgrad jämfört med dagens radialturbiner. Nyckelord: Turboöverladdare, Heavy-duty, Turbin, Axial, Radial 4 Preface This thesis is the result of an Industrial PhD project conducted at Scania CV AB in collaboration with the Division of Internal Combustion Engines at the Royal Institute of Technology , KTH, in Stockholm Sweden. The project forms part of the work at the Competence Center for Gas Exchange , CCGEx , which considers a wide range of aspects of the gas exchange process of the internal combustion engine. In addition, Lund Faculty of Engineering closely collaborated throughout the project with a focus on aspects of turbomachinery design. The project was initiated by Dr. Jonas Holmborn and Per-Inge Larsson of Scania CV AB in 2014 and work began in 2015. The project was planned to last a total of 4 years. Prof. Anders Christiansen-Erlandsson , head of the Division of Internal Combustion Engines at KTH, acted as main supervisor for the project. Prof. Magnus Genrup , head of Energy Sciences at Lund Faculty of Engineering LTH participated as co-supervisor. From Scania CV AB the project was supervised by Per-Inge Larsson, expert engineer at the Gas Exchange Systems and Turbo Development group. Also, Carl Fredriksson of Carlfred Turbo Design AB provided technical supervision within the field of turbocharger turbomachinery. This thesis is based on a compilation of research articles that

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    137 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us