On-Chip Spiral Inductors for Silicon-Based Radio-Frequency Integrated Circuits

On-Chip Spiral Inductors for Silicon-Based Radio-Frequency Integrated Circuits

http://holst.stanford.edu/~CPYue [email protected] On-Chip Spiral Inductors for Silicon-Based Radio-Frequency Integrated Circuits C. Patrick Yue Center for Integrated Systems Stanford University, CA http://holst.stanford.edu/~CPYue [email protected] Outline • Overview • A physical model for on-chip inductors • Effects of process and layout parameters • Design methodology • Inductors with patterned ground shields • Substrate noise coupling • Conclusions http://holst.stanford.edu/~CPYue [email protected] Worldwide Wireless Market 20M 36% Annual Growth (7%) (Source: CTIA, 1996.) Asia Pacific North America 5M 80M (27%) (6%) 125M (41%) Asia Pacific North America 19M (22%) 38M (43%) Europe Europe 75M (25%) 25M (29%) 1996 Total: 87M 2000 Total: 300M http://holst.stanford.edu/~CPYue [email protected] A Typical Cellular Phone RF front-end component count: Inductor 11 Capacitor >100 Resistor >50 IC 5 Transistor 12 Crystal 1 Filter 2 (Source: Bosch, 1997.) http://holst.stanford.edu/~CPYue [email protected] Advantages of Integration • Cost: assembly and packaging • Power: fewer parasitics • Design Flexibility: signals stay on chip •Size • Reliability • Tolerance http://holst.stanford.edu/~CPYue [email protected] Discrete Inductors • L: 2 to 20 nH (2 to 10%) • Q: 50 to 200 (1 to 2 GHz) inch • srf: 4 to 10 GHz mm (Source: Coilcraft, 1997.) http://holst.stanford.edu/~CPYue [email protected] Active Inductors i 1 -gm 1 i in • Excess Noise + + C v vin c • Extra Power g – m 2 – i2 • Limited Linearity C L = ---------------- gm1gm2 http://holst.stanford.edu/~CPYue [email protected] Bond Wire Inductors • Predictability • Unwanted Couplings • Repeatability • Limited Inductance (Source: ISSCC’95, pp. 266) http://holst.stanford.edu/~CPYue [email protected] A Typical Planar Spiral Inductor Number of Turns Outer Dimension Spacing Width http://holst.stanford.edu/~CPYue [email protected] Multilevel Interconnects (Source: Semiconductor International, 1997.) http://holst.stanford.edu/~CPYue [email protected] A Typical Inductor On Silicon Al SiO2 Si 3 µm 3D Perspective View Top View http://holst.stanford.edu/~CPYue [email protected] Model Description Cs Csi Cox Rsi Ls Rs http://holst.stanford.edu/~CPYue [email protected] Model Description Cs Ls Rs Cox Cox Rsi Csi Csi Rsi http://holst.stanford.edu/~CPYue [email protected] Model Description Physical Model of Inductor on Silicon Effects L : Greenhouse Method Mutual s Couplings ρ ⋅ l Eddy Rs = ------------------------------------------–t⁄δ- w ⋅δ ⋅()1e– Current R ε C s 2 ox Feed-Through ox ⋅⋅------------------ C C s =nw Capacitance s tox M1-M2 1 ε Oxide R C L ⋅⋅ ⋅ox si si s Cox =-- l w ------- Capacitance 2 tox 1 Si Substrate C =-- ⋅⋅l wC ⋅ si 2 Sub Capacitance 2 Si Substrate R = ------------------------- si ⋅⋅ Ohmic Loss l wGSub http://holst.stanford.edu/~CPYue [email protected] Skin Effect Co-axial E Field Current Conductor Microstrip http://holst.stanford.edu/~CPYue [email protected] Effective Metal Thickness Current t Density - x / δ t = ∫ e ⋅ dx eff 0 J 0 - t / δ =δ ⋅()1e– Actual Metal 0 t Thickness http://holst.stanford.edu/~CPYue [email protected] Measurement Setup HP 8720B Open Structure P P G R R G S O O S G B B G E E Device Under Test Probe Station http://holst.stanford.edu/~CPYue [email protected] Parameter Extraction Procedure S to Transmission De-embedded Matrix Conversion S Parameters S S 11 12 → AB S21 S22 CD Solve for Propagation Constant ( Γ ) and Characteristic Impedance ( Z0 ) coshΓl Z sinhΓl AB 0 = CD –1 Γ Γ Z0 sinh l cosh l R 2Z0 s Γ⋅⋅ --------- = = l Z0 Γ ⋅ l Rp Cp Cs Ls http://holst.stanford.edu/~CPYue [email protected] Measured and Modeled Values of Ls and Rs 10 25 R C s ox C 8 20 s R C L si si s ) 6 15 ) H Ω n ( ( s s R L 4 10 Copper 2 5 Aluminum (Cs =28fF) 0 0 Model 0.1 1 10 Frequency (GHz) http://holst.stanford.edu/~CPYue [email protected] Substrate Modeling C ox 2Z0 R C = --------- p p Γ ⋅ l R C si si Physical Model Extracted Capacitance and Resistance http://holst.stanford.edu/~CPYue [email protected] Measured and Modeled Values of Rp and Cp R 25 250 C s ox C s 20 200 R C L ) si si s Ω 15 k 150 ( (fF) p p C R 10 100 Copper 5 50 Aluminum 0 0 Model 0.1 1 10 Frequency (GHz) http://holst.stanford.edu/~CPYue [email protected] Definition of Inductor Quality Factor ω V cos t R 0 s R C C L p p s s Peak Magnetic Energy– Peak Electric Energy π------------------------------------------------------------------------------------------------------------- Q2= Energy Loss in One Oscillation Cycle ω L R 2 () s p R s C p + C s --------- × ------------------------------------------------------------------- ×1 – ------------------------------- –ω 2 L ()C + C R []()ω ⁄ 2⋅s p s s R p +L s R s +1Rs Ls Substrate Loss Factor Self-Resonance Factor http://holst.stanford.edu/~CPYue [email protected] Measured and Modeled Value of Q 10 8 6 Q 4 Copper 2 Aluminum 0 Model 0.1 1 10 Frequency (GHz) Substrate Loss Factor http://holst.stanford.edu/~CPYue 0.0 0.2 0.4 0.6 0.8 1.0 0.1 1 10 Measured andModeledValues of Frequency (GHz) Substrate Factors 0.0 0.2 0.4 0.6 0.8 1.0 Self-Resonance Factor [email protected] Model Aluminum Copper http://holst.stanford.edu/~CPYue [email protected] Comparison to Published Results 20 15 10 Line Width 5 5 µm 9 µm Q Predicted by Our Model 14 µm 0 µ 0 5 10 15 20 19 m 24 µm Measured Qpeak presented by Ashby et al. http://holst.stanford.edu/~CPYue [email protected] Effect of Metal Scheme on Q 8 R C s ox C s 6 R C L si si s Q 4 3 levels of 1 µm in parallel 2 3 µm Al 2 µm Al 0 1 µm Al 0.1 1 10 Frequency (GHz) Model http://holst.stanford.edu/~CPYue [email protected] Effect of Oxide Thickness on Q 8 R C s ox C s 6 R C L si si s Q 4 6.5 µm Oxide 2 4.5 µm Oxide 2.5 µm Oxide 0 Model 0.1 1 10 Frequency (GHz) http://holst.stanford.edu/~CPYue [email protected] Effect of Substrate Resistivity on Q 8 R C s ox C s 6 R C L si si s Q 4 10 Ω-cm Si: × -3 µ 2 Csub = 1.6 10 fF/ m 2 × -8 µ 2 Gsub = 4.0 10 S/ m 6 Ω-cm Si: × -3 µ 2 Csub = 6.0 10 fF/ m 0 G = 1.6×10-7 S/µm2 0.1 1 10 sub Frequency (GHz) Model http://holst.stanford.edu/~CPYue [email protected] Effect of Layout Area on Q 8 R C s ox C s 6 R C L si si s Q 4 Outer Dimension Line Width 2 550 µm, 41 µm 400 µm, 24 µm 0 300 µm, 13 µm 0.1 1 10 Frequency (GHz) Model http://holst.stanford.edu/~CPYue [email protected] Application of Model 1 f = ---------------------- C L C 2π LC⋅ , → f C = 1.6 GHz C1.2= pF L= 8 nH fC Circuit Requirements L ? Inductor Design with Area (Design Tool) Optimal Q Technology Substrate Constraints Factors http://holst.stanford.edu/~CPYue [email protected] Contour Plots of Q Measured Q Measured Q 1.7 3.4 2.9 4.6 10 0.6 GHz 1.0 GHz 8 1 1 6 3 3 4 5 5 Inductance (nH) 2 7 9 0 0 100 200 300 400 0 100 200 300 400 Outer Dimension (µm) Outer Dimension (µm) http://holst.stanford.edu/~CPYue [email protected] Contour Plots of Q Measured Q Measured Q 4.0 5.2 6.1 4.0 10 1.6 GHz1 4 3.0 GHz 1 4 8 3 2 5 4 6 5 4 7 7 Inductance (nH) 9 2 9 0 0 100 200 300 400 0 100 200 300 400 Outer Dimension (µm) Outer Dimension (µm) http://holst.stanford.edu/~CPYue [email protected] Outline • Overview • A physical model for on-chip inductors • Effects of process and layout parameters • Design methodology • Inductors with patterned ground shields • Substrate noise coupling • Conclusions http://holst.stanford.edu/~CPYue [email protected] Overview • Challenges - Q degraded by substrate loss - Substrate coupling - Modeling and characterization - Process constraints • Approaches - Etch away Si substrate - Patterned Ground Shield http://holst.stanford.edu/~CPYue [email protected] Suspended Inductors Wafer Backside Polyimide Membrane ~550 µm http://holst.stanford.edu/~CPYue [email protected] Electromagnetic Fields of Conventional On-Chip Inductors H Csi Cox E Rsi Ls Rs http://holst.stanford.edu/~CPYue [email protected] Problems with Solid Ground Shield Induced Loop Current and Magnetic Field http://holst.stanford.edu/~CPYue [email protected] EM Fields of On-Chip Inductors with Patterned Ground Shield http://holst.stanford.edu/~CPYue [email protected] Patterned Ground Shield Design • Pattern - Orthogonal to spiral (induced loop current) • Resistance - Low for termination of the electric field Ground Strips - Avoid attenuation of Slot between Strips the magnetic field Induced Loop Current http://holst.stanford.edu/~CPYue [email protected] Effect of Aluminum Ground Shields on L 10 8 Patterned 6 Solid (nH) s None L 4 (19 Ω-cm) 2 None (11 Ω-cm) 0 0.1 1 10 Frequency (GHz) http://holst.stanford.edu/~CPYue [email protected] Effect of Aluminum Ground Shields on R 25 20 Patterned ) 15 Solid Ω ( s None R 10 (19 Ω-cm) 5 None (11 Ω-cm) 0 0.1 1 10 Frequency (GHz) http://holst.stanford.edu/~CPYue [email protected] Effect of Aluminum Ground Shields on C 300 250 Patterned 200 Solid (fF) 150 p None C 100 (19 Ω-cm) 50 None (11 Ω-cm) 0 0.1 1 10 Frequency (GHz) http://holst.stanford.edu/~CPYue [email protected] Effect of Polysilicon Ground Shields on L 10 8 6 Patterned (nH) Solid s L 4 Patterned 2 Aluminum 0 0.1 1 10 Frequency (GHz) http://holst.stanford.edu/~CPYue [email protected] Effect of Polysilicon Ground Shields on R 25 20 ) 15 Patterned Ω ( s Solid R 10 Patterned 5 Aluminum 0 0.1 1 10 Frequency

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    56 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us