![Downloads, Would Then Need to Be Planned Around This the Access Time to Use the Time Effectively [38]](https://data.docslib.org/img/3a60ab92a6e30910dab9bd827208bcff-1.webp)
Abstract This work presents the design of a 6U nanosat carrying a NASA-designed miniature Ion Neutral Mass Spectrometer (mini-INMS) and the design and construction of a Helmholtz cage. The nanosat is designed to measure particle composition of the ionosphere’s F layer by flying on an elliptical orbit with an initial perigee of 250 km and apogee of 400 km. The nanosat will be deployed in a Sun-synchronous orbit and transfer to a lower orbit using an electrospray thruster for orbit raising and drag compensation to extend the mission lifetime which was analyzed in Systems Tool Kit (STK). A novel spinning motion is utilized to expand the particle collection capability of the mini-INMS. Attitude control was provided by magnetorquers with attitude determination and control schemes developed in MATLAB. Mechanical, thermal, and telecommunications analysis is performed using SolidWorks, ANSYS, COMSOL, and STK. Environmental factors, including magnetic field interference, radiation dosage, and particle impacts are also analyzed and accounted for using STK. Electrical power analysis was performed using STK and MATLAB to create a model of CubeSat power generation, storage and use. The Helmholtz cage, composed of three pairs of orthogonal square coils, was designed to simulate the magnetic environment experienced by the nanosat to provide ground-based testing of the magnetorquer-based ADCS. This cage was designed, manufactured, and tested to verify its accuracy. A controllable power source and data collection methods were also constructed to allow many different magnetic environments to be simulated. “Certain materials are included under the fair use exemption of the U.S. Copyright Law and have been prepared according to the fair use guidelines and are restricted from further use." Acknowledgements The team would like to thank the following individuals for their support in completing this project. Project advisors Professor Taillefer Professor Gatsonis Additional Support Adriana Hera Tina Stratis Ian Anderson 3 Table of Authorship 1 Introduction Brown 1.1 Background and Literature Review 1.1.1 CubeSat Applications and Missions Brown 1.1.2 Review of CubeSats at WPI St Jean 1.1.3 Helmholtz Cage Mileti 1.2 Goals Robatzek, Messey 1.3 Objectives, Approach, and Standards All 1.4 Mission Operations and Constraints Brown 1.5 Design Requirements and Constraints All 1.5.1 CubeSat 1.5.1.1 Dispenser background and selection Cooley 1.5.1.2 Launch vehicle background and selection Cooley 1.5.1.3 Mechanical Cooley 1.5.1.4 Propulsion Messey 1.5.1.5 Power St Jean 1.5.1.6 Telecommunications Robatzek 1.5.1.7 ADCS Klenk 1.5.1.8 Environmental Effects Brown 1.5.1.9 Thermal Control Mileti 1.5.2 Helmholtz Cage Klenk 1.6 Project Management and Budget Messey 1.7 Task Breakdown and Timetable Messey 1.8 Facilities and Equipment Mileti 2 Payload and Design Implications Brown 3 Mechanical Design and Analysis Cooley 4 Propulsion Messey 5 Power System Design and Analysis St Jean 6 Telecommunications Design Robatzek 7 Attitude Determination and Control Subsystem Klenk 8 Space Environment and Effects Brown 9 Thermal Control Analysis Mileti 10 Helmholtz Cage 10.1 Helmholtz Cage Overview Klenk 10.2 Helmholtz Cage Development and Design Klenk 10.3 Structural Design Cooley, St Jean 10.3.1 Magnetorquer Mounting Method Brown 10.3.2 Power Supplies Messey, Robatzek 10.3.3 Motor Controllers Mileti 10.4 Magnetorquer Test Article St. Jean, Klenk 10.5 Data Collection Methods Brown, Cooley 10.6 Data Management Cooley 10.7 Assembly St. Jean, Messey 4 10.8 Testing Klenk 11 Conclusion and Recommendations 11.1 Social Implications of CubeSats Brown 11.2 Recommendations 11.2.1 Spacecraft Charging Brown 11.2.2 Integrated System Cooley 11.2.3 Magnetorquers and Spinner Satellites Cooley 11.2.4 Magnetorquer Test Article Stand Brown Appendices Appendix A Cooley Appendix B Cooley Appendix C Messey Appendix D Messey Appendix E Robatzek Appendix F Klenk Appendix G Klenk Appendix H Klenk Appendix I Klenk Appendix J Klenk Appendix K Mileti Appendix L Klenk Appendix M Klenk Appendix N All 5 Table of Contents Abstract ........................................................................................................................................... 2 Acknowledgements ......................................................................................................................... 3 Table of Authorship ........................................................................................................................ 4 Table of Contents ............................................................................................................................ 6 Table of Figures ............................................................................................................................ 11 Table of Tables ............................................................................................................................. 15 1 Introduction ................................................................................................................................ 17 1.1 Background and Literature Review................................................................................ 18 1.1.1 CubeSat Applications and Missions ............................................................................. 18 1.1.2 Review of CubeSats at WPI ......................................................................................... 19 1.1.3 Helmholtz Cage ............................................................................................................ 21 1.2 Goals.................................................................................................................................... 21 1.3 Objectives, Approach, and Standards ................................................................................. 22 1.4 Mission Operations and Constraints ................................................................................... 25 1.5 Design Requirements and Constraints ................................................................................ 27 1.5.1 CubeSat ......................................................................................................................... 27 1.5.2 Helmholtz Cage ............................................................................................................ 37 1.6 Project Management and Budget ........................................................................................ 38 1.7 Task Breakdown and Timetable .......................................................................................... 39 1.8 Facilities and Equipment ..................................................................................................... 40 2 Payload and Design Implications............................................................................................... 41 2.1 Payload Overview ............................................................................................................... 41 2.2 Payload Data Collection ...................................................................................................... 44 3 Mechanical Design and Analysis ............................................................................................... 46 3.1 Mechanical Overview ......................................................................................................... 46 3.2 Mechanical Requirements ................................................................................................... 46 3.3 Mechanical Design .............................................................................................................. 48 3.3.1 Material Models ............................................................................................................ 51 3.3.2 Summary of Mechanical Design .................................................................................. 52 6 3.4 Mechanical Analysis ........................................................................................................... 57 3.4.1 Analysis Setup .............................................................................................................. 58 3.4.2 Modal Analysis ............................................................................................................. 60 3.4.3 Random Vibration Analysis ......................................................................................... 61 3.4.4 Results .......................................................................................................................... 65 4 Propulsion Analysis ................................................................................................................... 73 4.1 Propulsion Overview ........................................................................................................... 73 4.2 Thruster Selection ............................................................................................................... 75 4.3 Orbital Analysis................................................................................................................... 81 4.3.1 Science Leg Orbit ......................................................................................................... 81 4.3.2 Mission Set-Up ............................................................................................................. 83 4.3.3 Orbital Results .............................................................................................................
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages320 Page
-
File Size-