A Low-Power Wireless Transceiver for Deeply Implanted Biomedical Devices

A Low-Power Wireless Transceiver for Deeply Implanted Biomedical Devices

A LOW-POWER WIRELESS TRANSCEIVER FOR DEEPLY IMPLANTED BIOMEDICAL DEVICES by STEVE MAJERUS Submitted in partial fulfillment of the requirements for the degree of Master of Science Thesis Advisor: Dr. Steven L. Garverick Department of Electrical Engineering and Computer Science CASE WESTERN RESERVE UNIVERSITY August, 2008 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the thesis/dissertation of _____________________________________________________ candidate for the ______________________degree *. (signed)_______________________________________________ (chair of the committee) ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ (date) _______________________ *We also certify that written approval has been obtained for any proprietary material contained therein. Table of Contents 1 INTRODUCTION..................................................................................1 1.1 Motivation...............................................................................................1 1.2 Background.............................................................................................2 1.2.1 Existing Transceivers..........................................................................3 1.2.1.1 An RF-powered neural recording device: the Utah Array........3 1.2.1.2 Battery Powered Bion……………………………………..….5 1.2.1.3 A wide bandwidth, battery powered recorder: the SmartPill....7 2 BAND SELECTION AND DESIGN CONSIDERATIONS.................9 2.1 Band Analysis............................................................................................9 2.1.1 FCC Regulations................................................................................9 2.1.2 Power Considerations on Band Selection.........................................11 2.1.2.1 Receiver Power Savings..........................................................13 2.1.2.2 Transmitter Power Savings…………………………………..18 2.2 Band Selection..........................................................................................19 2.3 Design Goals.............................................................................................19 3 ARCHITECTURE & DESIGN.............................................................22 3.1 Architecture..............................................................................................22 3.1.1 OOK Receiver……………………………………………………...23 3.1.1.1 Differential Amplifier………………………………………..25 3.1.1.2 Schmitt Trigger………………………………………………28 3.1.1.3 Activity Detector……………………………………………..32 3.1.2 Manchester Decoder……………………………………………….34 3.1.2.1 Method for Decoding………………………………….……..35 3.1.2.2 All-Digital Manchester Decoder……………………….…….37 3.1.3 FSK Transmitter……………………………………………………40 3.1.3.1 LC Tank Modeling…………………………………………...41 3.1.3.2 LC Oscillator…………………………………………………43 3.1.3.3 Digital Power Control………………………………………..46 4 TEST RESULTS.....................................................................................48 4.1 Test Setup.................................................................................................48 4.2 OOK Receiver..........................................................................................49 4.2.1 Fully-Differential Amplifier……………………………………….49 4.2.2 Schmitt Trigger…………………………………………………….51 4.2.3 Activity Detector…………………………………………………..54 4.2.4 Entire Receiver…………………………………………………….56 4.3 Manchester Decoder................................................................................58 4.4 FSK Transmitter......................................................................................60 5 CONCLUSIONS AND FUTURE WORK............................................65 6 REFERENCES.......................................................................................68 i List of Tables Table 1-1 Performance summary of the Utah Transceiver, as described in [2]....................................................................................................................5 Table 1-2 Performance summary of the BPB in [3]................................................6 Table 1-3 Performance summary of the wireless endoscope in [6].........................7 Table 2-1 Summary of the transceiver design specifications................................21 Table 3-1 Transistor sizes and bias currents for the DA........................................27 Table 3-2 Transistor sizes used in the Schmitt Trigger.........................................30 Table 3-3 Transistor sizes for the activity detector................................................34 Table 4-1 Comparison of designed and estimated actual bias currents and output resistance for the differential amplifier.......................................50 Table 4-2 Measured Schmitt trigger thresholds.....................................................53 Table 5-1 Comparison of Measured Results to Design Goals...............................68 ii List of Figures Figure 1-1 Block diagram of a multi-channel, dual-band implantable neural recorder (from [2])...............................................................................4 Figure 1-2 Photograph of a packaged BPB (from [3])............................................6 Figure 1-3 Conceptual drawing of the SmartPill as it traverses the gastro- intestinal tract (from [5])................................................................................7 Figure 2-1 Table of FCC limits for maximum permissible exposure to electrical and magnetic fields at various frequencies (from [7])..................10 Figure 2-2 Plot of the attenuation by distance versus frequency for electric fields propagating in pure water and seawater (after [3]).............................12 Figure 2-3 A two-stage differential amplifier (from [9]).......................................14 Figure 2-4 The small-signal model for the output stage of the amplifier in Figure 1-5, used to determine the frequency response (after [9]).................14 Figure 2-5 The typical frequency response of a bandpass filter, such as a parallel-resonant LC tank (from [10])...........................................................16 Figure 3-1 Simplified block diagram of the low-power transceiver......................23 Figure 3-2 Block Diagram of the OOK Receiver..................................................24 Figure 3-3 High-level circuit diagram of the OOK receiver..................................24 Figure 3-4 Binary approximation of an OOK-modulated signal...........................25 Figure 3-5 Circuit schematic of one of the DAs used in the OOK receiver..........25 Figure 3-6 Half-circuit model of the DA: (a) schematic; (b) small-signal model.........................................................................................................26 Figure 3-7 Transistor-level schematic of the Schmitt trigger used in the OOK receiver.............................................................................................28 Figure 3-8 Detailed simulation showing switching thresholds of ±53 mV...........31 Figure 3-9 The activity detector used to demodulate the OOK signal to baseband.....................................................................................................33 Figure 3-10 Timing diagram showing Manchester-Encoded Data........................35 Figure 3-11 Timing diagram for a delay-based Manchester Decoder, using MED from Figure 3-10....................................................................36 Figure 3-12 Block diagram of a delay-based Manchester Decoder.......................37 Figure 3-13 SPICE simulation of the Manchester Decoder...................................39 Figure 3-14 Block diagram of a simple FSK modulator........................................40 Figure 3-15 Transformation of lossy LC tank with ESR to equivalent parallel RLC circuit....................................................................................42 Figure 3-16 NMOS cross-coupled pair, with equivalent negative resistance value, from [16].........................................................................................43 Figure 3-17 Transmitter schematic with frequency-switching network and off-chip LC tank.........................................................................................44 Figure 3-18 Digitally-controlled bias network for the FSK transmitter................47 Figure 4-1 Die photo of the fabricated transceiver circuits...................................48 Figure 4-2 Measured transfer function of the differential amplifiers....................49 Figure 4-3 Schematic of the differential amplifier................................................51 Figure 4-4 Schematic of the test setup used to measure the Schmitt trigger thresholds...................................................................................................52 iii Figure 4-5 Measurement of Schmitt positive threshold.........................................53 Figure 4-6 Oscilloscope plot showing the activity detector input (top trace) and output (bottom trace)...........................................................................55 Figure 4-7 Activity detector release delay measurement showing activity detector response (bottom trace) to a step input (top trace).......................57 Figure 4-8 OOK receiver output (top trace) when responding to a 50-mVpp input (bottom trace)...................................................................59

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    79 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us