Congruences Between Derivatives of Geometric L-Functions

Congruences Between Derivatives of Geometric L-Functions

<p>Congruences between Derivatives of Geometric&nbsp;-Functions </p><p>David Burns <br>Abstract. <br>David Burns Introduction </p><p>§<br>§<br>§</p><p>•••••<br>∗<br>§</p><p>§</p><p>congruences between derivatives </p><p>§<br>§<br>§</p><p></p><ul style="display: flex;"><li style="flex:1">§</li><li style="flex:1">§</li></ul><p>§</p><p>Preliminaries </p><p>pp</p><p>−</p><p>+</p><p>P<br>P<br>P</p><p>David Burns </p><p>p</p><p>P<br>·</p><p>•</p><p>p</p><p>P<br>→</p><ul style="display: flex;"><li style="flex:1">P</li><li style="flex:1">→ P </li></ul><p></p><p>∗</p><p>L</p><p>•</p><p>p</p><p>•</p><p></p><ul style="display: flex;"><li style="flex:1">⊗</li><li style="flex:1">→</li></ul><p></p><p>∗</p><p>L</p><p>•</p><p></p><ul style="display: flex;"><li style="flex:1">⊗</li><li style="flex:1">P</li></ul><p></p><ul style="display: flex;"><li style="flex:1">−</li><li style="flex:1">⊗</li><li style="flex:1">−</li></ul><p></p><p>∗</p><p>L</p><p></p><ul style="display: flex;"><li style="flex:1">•</li><li style="flex:1">•</li></ul><p></p><p>L</p><p>•<br>•</p><p></p><ul style="display: flex;"><li style="flex:1">⊗</li><li style="flex:1">⊗</li><li style="flex:1">→</li><li style="flex:1">⊗</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">(</li><li style="flex:1">)</li></ul><p></p><p>L</p><p>•</p><p></p><ul style="display: flex;"><li style="flex:1">⊗</li><li style="flex:1">→</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">(</li><li style="flex:1">)</li><li style="flex:1">(</li><li style="flex:1">)</li></ul><p></p><p>•</p><p></p><ul style="display: flex;"><li style="flex:1">⊗</li><li style="flex:1">→</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">can </li><li style="flex:1">(</li><li style="flex:1">)</li></ul><p></p><p>•</p><p>L</p><p>•</p><p>⊗</p><p></p><ul style="display: flex;"><li style="flex:1">•</li><li style="flex:1">•</li></ul><p></p><ul style="display: flex;"><li style="flex:1">•</li><li style="flex:1">•</li></ul><p></p><p>(−1) can </p><p>•<br>•</p><p>+1 </p><p>•</p><p>∼</p><p>•</p><p></p><ul style="display: flex;"><li style="flex:1">P</li><li style="flex:1">→</li></ul><p>§</p><p>×</p><p>§</p><p></p><ul style="display: flex;"><li style="flex:1">•</li><li style="flex:1">•</li></ul><p></p><ul style="display: flex;"><li style="flex:1">•</li><li style="flex:1">•</li></ul><p></p><p>(−1) can </p><p></p><ul style="display: flex;"><li style="flex:1">0</li><li style="flex:1">0</li></ul><p></p><p>0</p><p>O</p><p>Σ</p><p>O<sup style="top: -0.3551em;">× </sup></p><p>O</p><p></p><ul style="display: flex;"><li style="flex:1">Σ</li><li style="flex:1">Σ</li></ul><p>Σ</p><p>Σ<br>0</p><p>→</p><p>Σ<br>0</p><p>O</p><p>O<sup style="top: -0.3551em;">× </sup></p><p></p><ul style="display: flex;"><li style="flex:1">Σ</li><li style="flex:1">Σ</li></ul><p>Σ<br>Σ</p><p>congruences between derivatives <br>The leading term formula </p><p>•</p><p>−</p><p>Z</p><p></p><ul style="display: flex;"><li style="flex:1">W´et </li><li style="flex:1">Σ! </li><li style="flex:1">Σ</li></ul><p></p><p>•</p><p></p><ul style="display: flex;"><li style="flex:1">O</li><li style="flex:1">→</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">Σ</li><li style="flex:1">Σ</li></ul><p>Σ</p><p>•</p><p>Σp</p><p>0</p><p>•</p><p>0</p><p>L</p><p>•</p><p>1</p><p>•</p><p>1</p><p>L</p><p>•</p><p></p><ul style="display: flex;"><li style="flex:1">⊗</li><li style="flex:1">⊗</li><li style="flex:1">⊗</li><li style="flex:1">⊗</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">Σ</li><li style="flex:1">Σ</li><li style="flex:1">Σ</li><li style="flex:1">Σ</li></ul><p>Z[ <br>]<br>Z[ <br>]</p><p></p><ul style="display: flex;"><li style="flex:1">⊗ O<sup style="top: -0.3551em;">× </sup></li><li style="flex:1">⊗</li></ul><p></p><p>0Σ<br>Σ<br>Σ</p><p>O<sup style="top: -0.3551em;">× </sup></p><p>→</p><p>O<sup style="top: -0.3551em;">× </sup></p><p>0</p><ul style="display: flex;"><li style="flex:1">Σ</li><li style="flex:1">Σ</li><li style="flex:1">Σ</li></ul><p></p><p>⊗</p><p></p><ul style="display: flex;"><li style="flex:1">Σ</li><li style="flex:1">∈Σ( </li><li style="flex:1">)</li></ul><p></p><p>•</p><p>L</p><p>•</p><p>∼</p><ul style="display: flex;"><li style="flex:1">⊗</li><li style="flex:1">⊗</li><li style="flex:1">→</li></ul><p></p><p>Σ<br>Z[ <br>]<br>Z[ <br>]<br>Q[ <br>]<br>Q[ <br>]</p><ul style="display: flex;"><li style="flex:1">Σ</li><li style="flex:1">Σ</li></ul><p>Z[ <br>]</p><p>§</p><p>Q⊗ </p><ul style="display: flex;"><li style="flex:1">∧</li><li style="flex:1">×</li></ul><p></p><ul style="display: flex;"><li style="flex:1">×</li><li style="flex:1">∧</li></ul><p></p><p>∈</p><p>1<br>Σ</p><p></p><ul style="display: flex;"><li style="flex:1">∈</li><li style="flex:1">|</li><li style="flex:1">|</li></ul><p>−</p><p></p><ul style="display: flex;"><li style="flex:1">Σ</li><li style="flex:1">ˇ</li><li style="flex:1">Σ</li></ul><p></p><p>∧</p><p>∈</p><p></p><ul style="display: flex;"><li style="flex:1">Σ</li><li style="flex:1">Σ</li><li style="flex:1">Σ</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">∗</li><li style="flex:1">−</li></ul><p>•</p><p>−</p><p></p><ul style="display: flex;"><li style="flex:1">Σ</li><li style="flex:1">ˇ</li></ul><p>Σ<br>→1 </p><p>∧</p><p>∈<br>∗</p><p>Σ<br>Σ</p><p>×<br>∗</p><p></p><ul style="display: flex;"><li style="flex:1">P</li><li style="flex:1">·</li></ul><p></p><p>Σ<br>Z[ <br>]<br>Z[ <br>]<br>Σ<br>Σ</p><p>§<br>⊗O<sup style="top: -0.3551em;">× </sup></p><p>Σp</p><p>L</p><p>•</p><p>⊗</p><p>Σ<br>Z[ <br>]</p><p>David Burns </p><p>−→ </p><ul style="display: flex;"><li style="flex:1">∼</li><li style="flex:1">∼</li></ul><p>◦<br>∼</p><ul style="display: flex;"><li style="flex:1">⊗</li><li style="flex:1">⊗</li><li style="flex:1">⊕</li><li style="flex:1">⊗</li><li style="flex:1">⊗</li><li style="flex:1">⊕</li><li style="flex:1">⊗</li><li style="flex:1">⊗</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">Λ</li><li style="flex:1">Λ</li><li style="flex:1">Λ</li><li style="flex:1">Λ</li><li style="flex:1">Λ</li><li style="flex:1">Λ</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">⊗</li><li style="flex:1">→</li><li style="flex:1">⊗</li><li style="flex:1">⊗</li><li style="flex:1">→</li><li style="flex:1">⊗</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">Λ</li><li style="flex:1">Λ</li><li style="flex:1">Λ</li><li style="flex:1">Λ</li></ul><p></p><ul style="display: flex;"><li style="flex:1">1</li><li style="flex:1">0</li><li style="flex:1">−1 </li></ul><p></p><p>∧</p><p></p><ul style="display: flex;"><li style="flex:1">⊗</li><li style="flex:1">◦</li><li style="flex:1">⊗</li><li style="flex:1">⊕</li><li style="flex:1">∈</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">Λ</li><li style="flex:1">Σ</li></ul><p></p><p>−</p><p></p><ul style="display: flex;"><li style="flex:1">−</li><li style="flex:1">⊗</li><li style="flex:1">|</li><li style="flex:1">⊗</li></ul><p></p><p>Σ</p><p>Q</p><p>Λ<br>→1 </p><p>∧</p><p></p><ul style="display: flex;"><li style="flex:1">{</li><li style="flex:1">∈</li><li style="flex:1">∈</li><li style="flex:1">}</li></ul><p></p><ul style="display: flex;"><li style="flex:1">◦</li><li style="flex:1">∈</li></ul><p></p><p>Q</p><p>O</p><p>∧</p><p>∈</p><p>| | ∈</p><p></p><ul style="display: flex;"><li style="flex:1">×</li><li style="flex:1">∧</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">∈</li><li style="flex:1">≡</li></ul><p></p><p>0</p><p>∧</p><p>O</p><p>0p</p><p>•</p><p>−</p><p>Z</p><p></p><ul style="display: flex;"><li style="flex:1">´et </li><li style="flex:1">Σ! </li></ul><p>Σ</p><p>•</p><p>L</p><p>•</p><p>p</p><p>⊗</p><p></p><ul style="display: flex;"><li style="flex:1">Σ</li><li style="flex:1">Σ</li></ul><p>Z[ <br>]</p><p></p><ul style="display: flex;"><li style="flex:1">⊗</li><li style="flex:1">−</li><li style="flex:1">⊗ − </li></ul><p></p><p>Z[ </p><p>⊗</p><p>]</p><ul style="display: flex;"><li style="flex:1">W´et </li><li style="flex:1">Σ! </li></ul><p></p><p>•</p><p>pp</p><p>•<br>•</p><p></p><ul style="display: flex;"><li style="flex:1">´et </li><li style="flex:1">Σ! </li></ul><p>Σ</p><p>p</p><ul style="display: flex;"><li style="flex:1">W´et </li><li style="flex:1">Σ! </li></ul><p></p><ul style="display: flex;"><li style="flex:1">p</li><li style="flex:1">p</li></ul><p></p><p>•</p><p>Σ</p><p>×</p><ul style="display: flex;"><li style="flex:1">•</li><li style="flex:1">•</li><li style="flex:1">•</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">→</li><li style="flex:1">−−→ </li><li style="flex:1">→</li><li style="flex:1">→</li></ul><p></p><p>×</p><p></p><ul style="display: flex;"><li style="flex:1">−−→ </li><li style="flex:1">→</li><li style="flex:1">→</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">W´et </li><li style="flex:1">Σ! </li><li style="flex:1">W´et </li><li style="flex:1">Σ! </li><li style="flex:1">W´et </li><li style="flex:1">Σ! </li></ul><p></p><p>•</p><p>p</p><p>∼</p><p>W´et </p><p>∼</p><p>Σ! </p><p>•</p><p>p<br>´et </p><p>´et <br>Σ! </p><ul style="display: flex;"><li style="flex:1">Σ! </li><li style="flex:1">W´et </li><li style="flex:1">Σ! </li></ul><p>p</p><p></p><ul style="display: flex;"><li style="flex:1">•</li><li style="flex:1">•</li></ul><p></p><p>p</p><p>∼</p><p>congruences between derivatives </p><p>••<br>•</p><p>−1 </p><p>· · ·&nbsp;−−−−→ · · ·&nbsp;−−−−→ <br>−−−−→ −−−−→ <br>−−−−→ ·&nbsp;· · </p><p>−</p><p>•</p><p>−1 </p><p>−−−−→ ·&nbsp;· · </p><p>p</p><p></p><ul style="display: flex;"><li style="flex:1">•</li><li style="flex:1">•</li></ul><p></p><p>◦</p><p>−1 </p><p>◦</p><ul style="display: flex;"><li style="flex:1">◦</li><li style="flex:1">−</li><li style="flex:1">◦</li><li style="flex:1">◦</li><li style="flex:1">◦</li></ul><p></p><p>−1 </p><p>→</p><p></p><ul style="display: flex;"><li style="flex:1">•</li><li style="flex:1">•</li></ul><p></p><p>−1 </p><p></p><ul style="display: flex;"><li style="flex:1">−</li><li style="flex:1">→</li></ul><p></p><p>−1 </p><p></p><ul style="display: flex;"><li style="flex:1">0</li><li style="flex:1">•</li><li style="flex:1">•</li><li style="flex:1">0</li><li style="flex:1">0</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">→</li><li style="flex:1">−</li><li style="flex:1">◦</li><li style="flex:1">◦</li></ul><p></p><p>p</p><p></p><ul style="display: flex;"><li style="flex:1">•</li><li style="flex:1">•</li><li style="flex:1">•</li><li style="flex:1">•</li><li style="flex:1">•</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">∼</li><li style="flex:1">∼</li><li style="flex:1">∼</li><li style="flex:1">∼</li><li style="flex:1">∼</li></ul><p></p><ul style="display: flex;"><li style="flex:1">⊗</li><li style="flex:1">⊗</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">W´et </li><li style="flex:1">Σ! </li></ul><p>Σ</p><p></p><ul style="display: flex;"><li style="flex:1">←− </li><li style="flex:1">←− </li></ul><p></p><p>L</p><p>•</p><p></p><ul style="display: flex;"><li style="flex:1">⊗</li><li style="flex:1">→</li></ul><p></p><p>Σ</p><p>Q [ </p><p>]</p><p>Q [ </p><p>]<br>Σ</p><p>Z [ </p><p>]</p><p>P</p><ul style="display: flex;"><li style="flex:1">⊗</li><li style="flex:1">⊗</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">Σ</li><li style="flex:1">Σ</li></ul><p></p><p>Q<br>L</p><p></p><ul style="display: flex;"><li style="flex:1">•</li><li style="flex:1">•</li></ul><p></p><p>∼</p><ul style="display: flex;"><li style="flex:1">⊗</li><li style="flex:1">⊗</li><li style="flex:1">⊗</li><li style="flex:1">⊗</li></ul><p></p><p>Σ</p><p>Q</p><p>Σ<br>Σ</p><p>Z [ </p><p>]</p><p>P</p><p></p><ul style="display: flex;"><li style="flex:1">•</li><li style="flex:1">∗</li></ul><p></p><p>·</p><p>Σ</p><p>Z [ </p><p>]</p><p>Z [ </p><p>]</p><ul style="display: flex;"><li style="flex:1">Σ</li><li style="flex:1">Σ</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">P</li><li style="flex:1">→</li><li style="flex:1">P</li></ul><p></p><ul style="display: flex;"><li style="flex:1">⊗</li><li style="flex:1">−</li></ul><p></p><p>Σ<br>Z[ Z[ <br>]</p><p></p><ul style="display: flex;"><li style="flex:1">•</li><li style="flex:1">•</li></ul><p></p><p>⊗</p><p>Σ</p><p>Z [ </p><p>Σ<br>Z[ </p><ul style="display: flex;"><li style="flex:1">]</li><li style="flex:1">]</li></ul><p></p><p>Z [ </p><p>]</p><ul style="display: flex;"><li style="flex:1">Σ</li><li style="flex:1">Σ</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">•</li><li style="flex:1">∗</li></ul><p></p><p>·</p><p>Σ<br>]</p><p>Z [ </p><p></p><ul style="display: flex;"><li style="flex:1">]</li><li style="flex:1">Σ</li></ul><p>Σ</p><p></p><ul style="display: flex;"><li style="flex:1">∗</li><li style="flex:1">∗</li></ul><p></p><p>#<br>Σ</p><p>p<br>Σ</p><p>•</p><p>Σ</p><p>W</p><p>Σ</p><p>David Burns </p><p>→</p><p></p><ul style="display: flex;"><li style="flex:1">0</li><li style="flex:1">0</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">•</li><li style="flex:1">∗</li></ul><p></p><p>·</p><p>Z [ </p><p>Σ</p><p>Z [ </p><p></p><ul style="display: flex;"><li style="flex:1">]</li><li style="flex:1">]</li></ul><p></p><ul style="display: flex;"><li style="flex:1">Σ</li><li style="flex:1">Σ</li></ul><p></p><p>Iwasawa theory </p><p></p><ul style="display: flex;"><li style="flex:1">G</li><li style="flex:1">G</li></ul><p>G<br>G<br>←− <br>G</p><p></p><ul style="display: flex;"><li style="flex:1">G</li><li style="flex:1">G</li></ul><p></p><p>#</p><p></p><ul style="display: flex;"><li style="flex:1">G</li><li style="flex:1">G</li><li style="flex:1">G</li><li style="flex:1">G</li></ul><p>G</p><p>##</p><p>G</p><p>−1 </p><p></p><ul style="display: flex;"><li style="flex:1">G</li><li style="flex:1">G</li></ul><p></p><ul style="display: flex;"><li style="flex:1">G</li><li style="flex:1">O</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">Σ</li><li style="flex:1">Σ</li></ul><p></p><p>−</p><p>G</p><p>•</p><p>#</p><p>G</p><p></p><ul style="display: flex;"><li style="flex:1">´et </li><li style="flex:1">Σ! </li></ul><p>Σ</p><p>→</p><p></p><ul style="display: flex;"><li style="flex:1">Σ</li><li style="flex:1">Σ</li></ul><p></p><p>∼</p><p></p><ul style="display: flex;"><li style="flex:1">→</li><li style="flex:1">G</li></ul><p></p><ul style="display: flex;"><li style="flex:1">G</li><li style="flex:1">G</li><li style="flex:1">G</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">Λ(G </li><li style="flex:1">)</li></ul><p></p><p>∼</p><p></p><ul style="display: flex;"><li style="flex:1">G</li><li style="flex:1">G</li></ul><p>G</p><p></p><ul style="display: flex;"><li style="flex:1">Λ(G </li><li style="flex:1">)</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">G</li><li style="flex:1">G</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">Λ(G </li><li style="flex:1">)</li></ul><p></p><p>−</p><p></p><ul style="display: flex;"><li style="flex:1">−</li><li style="flex:1">G</li><li style="flex:1">−</li><li style="flex:1">G</li></ul><p></p><p>Λ(G <br>)</p><ul style="display: flex;"><li style="flex:1">+</li><li style="flex:1">p</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">G</li><li style="flex:1">G</li></ul><p></p><p>p</p><p>G</p><p></p><ul style="display: flex;"><li style="flex:1">•</li><li style="flex:1">•</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">G</li><li style="flex:1">−</li></ul><p>G</p><p></p><ul style="display: flex;"><li style="flex:1">Λ(G </li><li style="flex:1">)</li></ul><p></p><ul style="display: flex;"><li style="flex:1">Σ</li><li style="flex:1">Σ</li></ul><p></p><p>G</p><ul style="display: flex;"><li style="flex:1">G</li><li style="flex:1">⊗</li></ul><p></p><p>Λ(G) </p><p>∞</p><p>G</p><p>congruences between derivatives </p><p>G</p><p>p</p><p>L</p><p></p><ul style="display: flex;"><li style="flex:1">•</li><li style="flex:1">•</li></ul><p></p><p>∼</p><ul style="display: flex;"><li style="flex:1">G</li><li style="flex:1">G</li><li style="flex:1">⊗</li></ul><p></p><p>Λ(G) </p><p>G <sup style="top: -0.8652em;">Σ </sup></p><p>Σ</p><p>•</p><p>11</p><p>••</p><p>G</p><p></p><ul style="display: flex;"><li style="flex:1">Σ</li><li style="flex:1">Σ</li></ul><p>Σ</p><p></p><ul style="display: flex;"><li style="flex:1">∞</li><li style="flex:1">•</li></ul><p></p><p>Σ</p><p>∞</p><p>G</p><p>•</p><p>G</p><p></p><ul style="display: flex;"><li style="flex:1">•</li><li style="flex:1">•</li><li style="flex:1">•</li><li style="flex:1">•</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">Σ</li><li style="flex:1">Σ</li></ul><p>p</p><p>•</p><p>G</p><p>L</p><p></p><ul style="display: flex;"><li style="flex:1">•</li><li style="flex:1">•</li></ul><p></p><p>∼</p><ul style="display: flex;"><li style="flex:1">G</li><li style="flex:1">⊗</li></ul><p></p><p>Λ(G) p</p><p>G</p><p>L</p><p>•</p><p>L</p><p>••</p><p></p><ul style="display: flex;"><li style="flex:1">G</li><li style="flex:1">⊗</li><li style="flex:1">G</li></ul><p></p><p>Λ(G </p><p></p><ul style="display: flex;"><li style="flex:1">⊗</li><li style="flex:1">G − </li></ul><p>−G</p><p>Λ(G) </p><ul style="display: flex;"><li style="flex:1">Λ(G) </li><li style="flex:1">Λ(G) </li></ul><p></p><p>L</p><p>•</p><p>∼</p><ul style="display: flex;"><li style="flex:1">G</li><li style="flex:1">⊗</li><li style="flex:1">G</li></ul><p></p><p>)<br>Λ(G) </p><p>Λ(G </p><p>•</p><p>∼<br>−</p><p>)</p><p>•</p><p>G</p><p></p><ul style="display: flex;"><li style="flex:1">•</li><li style="flex:1">•</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">G</li><li style="flex:1">G</li><li style="flex:1">−</li></ul><p></p><p>Z</p><p>p</p><p></p><ul style="display: flex;"><li style="flex:1">G</li><li style="flex:1">G</li></ul><p>G<br>∼</p><ul style="display: flex;"><li style="flex:1">G</li><li style="flex:1">G</li></ul><p></p><p>Z</p><p>Λ(G) </p><p>∈</p><p>Z</p><p>(G) </p><p>←− <br>G</p><p></p><ul style="display: flex;"><li style="flex:1">•</li><li style="flex:1">•</li></ul><p>∈</p><p>(G) </p><p>←− </p><p>•</p><p>0</p><p>•</p><p></p><ul style="display: flex;"><li style="flex:1">∈ { </li><li style="flex:1">}</li></ul><p></p><ul style="display: flex;"><li style="flex:1">⊗ O<sup style="top: -0.3551em;">× </sup></li><li style="flex:1">G</li></ul><p></p><p>Σ<br>1</p><p>•</p><p></p><ul style="display: flex;"><li style="flex:1">→</li><li style="flex:1">⊗</li><li style="flex:1">O</li><li style="flex:1">→</li><li style="flex:1">→</li><li style="flex:1">⊗</li><li style="flex:1">→</li><li style="flex:1">→</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">Σ</li><li style="flex:1">Σ</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">0</li><li style="flex:1">0</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">⊆</li><li style="flex:1">∈</li><li style="flex:1">G</li></ul><p></p><p>0</p><p>•</p><p>0</p><p>•</p><p>1</p><p>•</p><p>1</p><p>•</p><p></p><ul style="display: flex;"><li style="flex:1">→</li><li style="flex:1">→</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">0</li><li style="flex:1">0</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">tor </li><li style="flex:1">tor </li></ul><p></p><p>0<br>0</p><p>→</p><p>1</p><p>•</p><p>1</p><p>•</p><p>→</p><p>0</p><p></p><ul style="display: flex;"><li style="flex:1">tf </li><li style="flex:1">tf </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">0</li><li style="flex:1">0</li></ul><p></p><p>0</p><p></p><ul style="display: flex;"><li style="flex:1">⊗</li><li style="flex:1">→</li><li style="flex:1">⊗</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">0</li><li style="flex:1">0</li></ul><p></p><p>{ } </p><ul style="display: flex;"><li style="flex:1">{ } </li><li style="flex:1">|</li></ul><p></p><p>→<br>G</p><p>1</p><p>•</p><p></p><ul style="display: flex;"><li style="flex:1">→</li><li style="flex:1">⊗</li><li style="flex:1">O</li><li style="flex:1">→</li><li style="flex:1">→</li><li style="flex:1">G ⊗<sub style="top: 0.15em;">Λ(G </sub></li><li style="flex:1">→</li><li style="flex:1">→</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">)</li><li style="flex:1">Σ</li></ul><p></p><p>←− </p><p>0</p><p>∈Σ </p><p>David Burns </p><p>G</p><p>0</p><p></p><ul style="display: flex;"><li style="flex:1">→</li><li style="flex:1">⊗ O<sup style="top: -0.3551em;">× </sup></li><li style="flex:1">→</li></ul><p></p><p>0</p><p></p><ul style="display: flex;"><li style="flex:1">⊗</li><li style="flex:1">→</li><li style="flex:1">⊗</li><li style="flex:1">→</li><li style="flex:1">⊗</li><li style="flex:1">O</li><li style="flex:1">→</li><li style="flex:1">→</li></ul><p>∈</p><p></p><ul style="display: flex;"><li style="flex:1">0</li><li style="flex:1">(</li><li style="flex:1">)</li></ul><p>Σ</p><ul style="display: flex;"><li style="flex:1">Σ</li><li style="flex:1">Σ</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">(</li><li style="flex:1">)</li></ul><p></p><p>G</p><p>0</p><p>0</p><p></p><ul style="display: flex;"><li style="flex:1">≤</li><li style="flex:1">G</li></ul><p>⊗<br>←− </p><p>0</p><p>G ⊗<sub style="top: 0.15em;">Λ(G </sub><br>→</p><p>)</p><p>G</p><p>0</p><p>•</p><p></p><ul style="display: flex;"><li style="flex:1">→</li><li style="flex:1">→</li><li style="flex:1">G ⊗<sub style="top: 0.15em;">Λ(G </sub></li><li style="flex:1">→</li><li style="flex:1">⊗</li><li style="flex:1">O</li><li style="flex:1">→</li></ul><p></p><p>)<br>Σ</p><p>←− </p><p>0</p><p>∈Σ fin <br>0</p><p></p><ul style="display: flex;"><li style="flex:1">⊗</li><li style="flex:1">G</li></ul><p>←− </p><p>0</p><p>G ⊗<sub style="top: 0.15em;">Λ(G </sub></p><p>)</p><p></p><ul style="display: flex;"><li style="flex:1">−</li><li style="flex:1">∈</li><li style="flex:1">G</li><li style="flex:1">∈ G </li></ul><p>→<br>G</p><p>0</p><p>•</p><p>G</p><p>1</p><p>••</p><p></p><ul style="display: flex;"><li style="flex:1">p</li><li style="flex:1">0</li><li style="flex:1">1</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">G</li><li style="flex:1">→</li></ul><p></p><p>0</p><p>•</p><p>0</p><ul style="display: flex;"><li style="flex:1">0</li><li style="flex:1">1</li><li style="flex:1">1</li></ul><p></p><p>•</p><p>−</p><p>−−→ </p><p>•<br>•</p><p></p><ul style="display: flex;"><li style="flex:1">p</li><li style="flex:1">−1 </li><li style="flex:1">0</li><li style="flex:1">1</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">G</li><li style="flex:1">· · · → </li><li style="flex:1">−→ </li></ul><p></p><p>−1 </p><p></p><ul style="display: flex;"><li style="flex:1">G</li><li style="flex:1">G</li></ul><p></p><p>0<br>−1 </p><ul style="display: flex;"><li style="flex:1">1</li><li style="flex:1">1</li><li style="flex:1">0</li></ul><p></p><p>G</p><p>−1 </p><p>•</p><p>1</p><p>−−→ </p><p>≥0 </p><p></p><ul style="display: flex;"><li style="flex:1">•</li><li style="flex:1">•</li></ul><p></p><p>p</p><p>L</p><p></p><ul style="display: flex;"><li style="flex:1">•</li><li style="flex:1">•</li></ul><p></p><p>∼</p><ul style="display: flex;"><li style="flex:1">G</li><li style="flex:1">⊗</li><li style="flex:1">G</li><li style="flex:1">G</li><li style="flex:1">⊗</li></ul><p></p><p>Λ(G) <br>Λ(G) <br>−1 </p><ul style="display: flex;"><li style="flex:1">0</li><li style="flex:1">0</li></ul><p></p><p>•</p><p>1</p><p></p><ul style="display: flex;"><li style="flex:1">∼</li><li style="flex:1">∼</li></ul><p>G</p><p>⊗ O<sup style="top: -0.3551em;">× </sup></p><p>1<br>Σ</p><p></p><ul style="display: flex;"><li style="flex:1">•</li><li style="flex:1">•</li></ul><p></p><p>p</p><p>∼<br>G</p><p>≥0 <br>−1 </p><p>G</p><p>−1 </p><p>∼</p><p>−1 <br>−1 </p><p>G</p><ul style="display: flex;"><li style="flex:1">←− </li><li style="flex:1">←− </li></ul><p></p><p>∞</p><p>⊆</p><p>fin <br>0</p><p></p><ul style="display: flex;"><li style="flex:1">•</li><li style="flex:1">•</li></ul><p></p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    27 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us