
Radioactive Molecules in Space A. A. Breier, T. F. Giesen June 30, 2021 Alexander A. Breier, New Opportunities for Fundamental Research with Radioactive Molecules Höfner, S., Olofsson, H. Astron Astrophys Rev 26, 1 (2018) Radioactive Molecules in Space A. A. Breier, T. F. Giesen June 30, 2021 Alexander A. Breier, New Opportunities for Fundamental Research with Radioactive Molecules Alexander A. Breier, New Opportunities for Fundamental Research with Radioactive Molecules Alexander A. Breier, New Opportunities for Fundamental Research with Radioactive Molecules 2 Massive stars Neutron stars Big Bang Alexander A. Breier, New Opportunities for Fundamental Research with Radioactive Molecules 2 Massive stars Neutron stars Big Bang Alexander A. Breier, New Opportunities for Fundamental Research with Radioactive Molecules 2 Alexander A. Breier, New Opportunities for Fundamental Research with Radioactive Molecules 2 Alexander A. Breier, New Opportunities for Fundamental Research with Radioactive Molecules 2 Alexander A. Breier, New Opportunities for Fundamental Research with Radioactive Molecules 2 Understanding stellar evolution by observing radioactive nuclei Alexander A. Breier, New Opportunities for Fundamental Research with Radioactive Molecules 2 Radioactive atoms in space Alexander A. Breier, New Opportunities for Fundamental Research with Radioactive Molecules 3 Radioactive atoms in space • Photon energy range: 340 nm -1000nm (R~60000) • Spatial resolution: >10“ (crater on the moon) 2.7 m (107") Harlan J. Smith Telescope Alexander A. Breier, New Opportunities for Fundamental Research with Radioactive Molecules 3 Radioactive atoms in space 2MASS J09544277+5246414 – giant star 2.7 m (107") Harlan J. Smith Telescope 232Th: 휏1 = 14.05 Gyr 238U: 휏1 = 4.47 Gyr Τ2 Τ2 E. M. Holmbeck et al. 2018 ApJL 859 L24 Alexander A. Breier, New Opportunities for Fundamental Research with Radioactive Molecules 3 Radioactive atoms in space 2.7 m (107") Harlan J. Smith Telescope Alexander A. Breier, New Opportunities for Fundamental Research with Radioactive Molecules 3 Radioactive atoms in space ESA/Hubble & NASA Suntzeff et al ApJ 384 L33 (1992) 2.7 m (107") Harlan J. Smith Telescope Alexander A. Breier, New Opportunities for Fundamental Research with Radioactive Molecules 3 Radioactive atoms in space ESA/Hubble & NASA Suntzeff et al ApJ 384 L33 (1992) 2.7 m (107") Harlan J. Smith Telescope Alexander A. Breier, New Opportunities for Fundamental Research with Radioactive Molecules 3 Radioactive atoms in space Alexander A. Breier, New Opportunities for Fundamental Research with Radioactive Molecules 4 Radioactive atoms in space X-Ray telescope: NuSTAR • Single photon event wrt τ • Photon energy range: keV - MeV • Spatial resolution: >10“ Alexander A. Breier, New Opportunities for Fundamental Research with Radioactive Molecules 4 Radioactive atoms in space 44Ti 5´ Cas A Mean lifetime τ = 85 y Spatial resolution Objects Alexander A. Breier, New Opportunities for Fundamental Research with Radioactive Molecules 5 Radioactive atoms in space 44Ti 26Al 5´ Cas A Bouchet et al., ApJ 801, 142 (2015) Mean lifetime τ = 85 y τ = 1.0 My Spatial resolution Objects Regions Alexander A. Breier, New Opportunities for Fundamental Research with Radioactive Molecules 5 Radioactive atoms in space 44Ti 26Al 60Fe 5´ Wang et al., A&A 469, 1005 (2007) Cas A Bouchet et al., ApJ 801, 142 (2015) Mean lifetime τ = 85 y τ = 1.0 My τ = 3.8 My Spatial resolution Objects Regions vanishing Alexander A. Breier, New Opportunities for Fundamental Research with Radioactive Molecules 5 Radioactive atoms in space 44Ti 26Al 60Fe 5´ Wang et al., A&A 469, 1005 (2007) Cas A Bouchet et al., ApJ 801, 142 (2015) Mean lifetime increases τ = 85 y τ = 1.0 My τ = 3.8 My Spatial resolution increases Objects Regions vanishing Alexander A. Breier, New Opportunities for Fundamental Research with Radioactive Molecules 5 From MeV to meV MeV Alexander A. Breier, New Opportunities for Fundamental Research with Radioactive Molecules 6 From MeV to meV MeV Interferometric radiotelescope: meV • Continuous photon flux Frequency range: 80 - 950 GHz Spatial resolution: >0,01‘‘ (26Al:26AlF ≙ 1 : 1012) Alexander A. Breier, New Opportunities for Fundamental Research with Radioactive Molecules 6 From MeV to meV MeV Interferometric radiotelescope: meV • Continuous photon flux Frequency range: 80 - 950 GHz Spatial resolution: >0,01‘‘ (26Al:26AlF ≙ 1 : 1012) Alexander A. Breier, New Opportunities for Fundamental Research with Radioactive Molecules 6 Galactic 26Al distribution 26 m Al = 2.8(8) × M total ⨀ Credit: ESA/Gaia/DPAC & Plüschke (2001) Alexander A. Breier, New Opportunities for Fundamental Research with Radioactive Molecules 7 Galactic 26Al distribution ‘Inner Galaxy‘ Cygnus Orion 26 m Al = 2.8(8) × M total ⨀ Credit: ESA/Gaia/DPAC & Plüschke (2001) Alexander A. Breier, New Opportunities for Fundamental Research with Radioactive Molecules 7 Galactic 26Al distribution ‘Inner Galaxy‘ Cygnus CK Vul Orion X 26 m Al = 2.8(8) × M total ⨀ Credit: ESA/Gaia/DPAC & Plüschke (2001) Alexander A. Breier, New Opportunities for Fundamental Research with Radioactive Molecules 7 CK Vulpeculae (CK Vul) Key facts • 1671(1) CK Vul outburst observed • ‘Red’ nova object Alexander A. Breier, New Opportunities for Fundamental Research with Radioactive Molecules 8 CK Vulpeculae (CK Vul) Key facts • 1671(1) CK Vul outburst observed • 1982 Bipolar nebula was found • ‘Red’ nova object • 27 molecules detected containing H, C, N, O, F, Al, Si, P, S Nature 520, 322 (2015) Alexander A. Breier, New Opportunities for Fundamental Research with Radioactive Molecules 8 CK Vulpeculae (CK Vul) Key facts • 1671(1) CK Vul outburst observed • 1982 Bipolar nebula was found • ‘Red’ nova object • 27 molecules detected containing H, C, N, O, F, Al, Si, P, S Isotopic ratios CK Vul Solar 12C/13C ∼3 ∼89 14N/15N ∼16 ∼272 16O/18O ∼36 ∼499 28Si/29Si ∼7 ∼20 Nature 520, 322 (2015) Alexander A. Breier, New Opportunities for Fundamental Research with Radioactive Molecules 8 Molecule: 27AlF Spectroscopic facts Astronomical observation Observed in Lab since 1939 • C-rich environment: IRC+10216 8 transitions 2σ22π4 Valence conf. • Planetary nebular: CRL 2688 Ground state X 1Σ+ 3 transitions Dipole moment [D] 1.53 Nuclear spin I (27Al/19F) 2.5/0.5 Q(27Al) [mb] 147(1) Molecular parameterization Dunham parameterization Alexander A. Breier, New Opportunities for Fundamental Research with Radioactive Molecules 9 Molecule: 27AlF Spectroscopic facts Astronomical observation +2.4 kmΤ Observed in Lab since 1939 • T푒푥 = 12.9−1.8K; Line width:∼ 140 s Valence conf. 2σ22π4 Ground state X 1Σ+ Dipole moment [D] 1.53 Nuclear spin I (27Al/19F) 2.5/0.5 Q(27Al) [mb] 147(1) Molecular parameterization Dunham parameterization ń Alexander A. Breier, New Opportunities for Fundamental Research with Radioactive Molecules 9 Mass-independent description of AlF AlF U01 = 184655.12(23) MHz ∙ u BO re = 1.65435196(103) Å A B AB ΔU01 ΔU01 BF -1.84(6) -1.4* AlF [theo] [-0.96] [-1.45] GaF -0.66(20) -1.5* Using wobble-stretch theory I (26Al/19F) 5/0.5 Q(26Al) [mb] 265(32) →Reducing uncertainty from 10-5 to 10-7 Alexander A. Breier, New Opportunities for Fundamental Research with Radioactive Molecules 10 Mass-independent description of AlF Astronomical observation AlF U01 = 184655.12(23) MHz ∙ u BO re = 1.65435196(103) Å A B AB ΔU01 ΔU01 BF -1.84(6) -1.4* AlF [theo] [-0.96] [-1.45] GaF -0.66(20) -1.5* Using wobble-stretch theory I (26Al/19F) 5/0.5 Q(26Al) [mb] 265(32) ń Alexander A. Breier, New Opportunities for Fundamental Research with Radioactive Molecules 10 Mass-independent description of AlF Astronomical observation AlF U01 = 184655.12(23) MHz ∙ u BO re = 1.65435196(103) Å A B AB ΔU01 ΔU01 BF -1.84(6) -1.4* AlF -0.97(6) -1.2* [theo] [-0.96] [-1.45] GaF -0.66(20) -1.5* Using wobble-stretch theory I (26Al/19F) 5/0.5 Q(26Al) [mb] 265(32) ń Alexander A. Breier, New Opportunities for Fundamental Research with Radioactive Molecules 10 Why so much 26AlF ? The origin of 26Al +0.5 15 −2 N27 = 3.0−0.6 × 10 cm Vul +3.2 N27ΤN26 = 7.1−2.2 CK Nഥ27ΤNഥ26 ≈ 120000 AGB Alexander A. Breier, New Opportunities for Fundamental Research with Radioactive Molecules 11 Why so much 26AlF ? Merging scenario • Stellar Merger: two low mass star being one in the RGB phase ń Alexander A. Breier, New Opportunities for Fundamental Research with Radioactive Molecules 11 Why so much 26AlF ? Merging scenario • Stellar Merger: two low mass star being one in the RGB phase ń Or • Merger event between a white and brown dwarf Alexander A. Breier, New Opportunities for Fundamental Research with Radioactive Molecules 11 Are there more possible sources? Credit: ESA/Gaia/DPAC & Plüschke (2001) Alexander A. Breier, New Opportunities for Fundamental Research with Radioactive Molecules 12 Are there more possible sources? SN Remnant SN1987A Credit: ESA/Gaia/DPAC & Plüschke (2001) Alexander A. Breier, New Opportunities for Fundamental Research with Radioactive Molecules 12 Are there more possible sources? CK Vul SN Remnant Merger nebula SN1987A Credit: ESA/Gaia/DPAC & Plüschke (2001) Alexander A. Breier, New Opportunities for Fundamental Research with Radioactive Molecules 12 Are there more possible sources? CK Vul h Car SN Remnant Merger nebula Massive star SN1987A Credit: ESA/Gaia/DPAC & Plüschke (2001) Alexander A. Breier, New Opportunities for Fundamental Research with Radioactive Molecules 12 Are there more possible sources? CK Vul h Car SN Remnant Merger nebula Massive star Hidden merger Kamiński et al A&A 646, A1 (2021) SN1987A Credit: ESA/Gaia/DPAC & Plüschke (2001) Alexander A. Breier, New Opportunities for Fundamental Research with Radioactive Molecules 12 Stellar environments: Astrochemistry Credit : NASA/ESA/R. : NASA/ESA/R. Humphreys C/O <1 Guélin L102 (2010) 720 et al et ApJL A&A 610, A4 (2018) A4 610, A&A C/O >1 al et E. D. TenenbaumE. Alexander A. Breier, New Opportunities for Fundamental Research with Radioactive Molecules 13 Stellar environments: Astrochemistry Credit : NASA/ESA/R.
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages56 Page
-
File Size-