Radioactive Molecules in Space A. A. Breier, T. F. Giesen

June 30, 2021

Alexander A. Breier, New Opportunities for Fundamental Research with Radioactive Molecules Höfner, S., Olofsson, H. Astron Astrophys Rev 26, 1 (2018)

Radioactive Molecules in Space A. A. Breier, T. F. Giesen

June 30, 2021

Alexander A. Breier, New Opportunities for Fundamental Research with Radioactive Molecules Alexander A. Breier, New Opportunities for Fundamental Research with Radioactive Molecules Alexander A. Breier, New Opportunities for Fundamental Research with Radioactive Molecules 2

Massive stars Big Bang Big

Alexander A. Breier, New Opportunities for Fundamental Research with Radioactive Molecules 2

Massive stars Neutron stars Big Bang Big

Alexander A. Breier, New Opportunities for Fundamental Research with Radioactive Molecules 2 Alexander A. Breier, New Opportunities for Fundamental Research with Radioactive Molecules 2 Alexander A. Breier, New Opportunities for Fundamental Research with Radioactive Molecules 2 Alexander A. Breier, New Opportunities for Fundamental Research with Radioactive Molecules 2 Understanding stellar evolution by observing radioactive nuclei

Alexander A. Breier, New Opportunities for Fundamental Research with Radioactive Molecules 2 Radioactive atoms in space

Alexander A. Breier, New Opportunities for Fundamental Research with Radioactive Molecules 3 Radioactive atoms in space

• Photon energy range: 340 nm -1000nm (R~60000) • Spatial resolution: >10“ (crater on the moon)

2.7 m (107") Harlan J. Smith Telescope

Alexander A. Breier, New Opportunities for Fundamental Research with Radioactive Molecules 3 Radioactive atoms in space

2MASS J09544277+5246414 – giant

2.7 m (107") Harlan J. Smith Telescope

232Th: 휏1 = 14.05 Gyr 238U: 휏1 = 4.47 Gyr Τ2 Τ2 E. M. Holmbeck et al. 2018 ApJL 859 L24

Alexander A. Breier, New Opportunities for Fundamental Research with Radioactive Molecules 3 Radioactive atoms in space

2.7 m (107") Harlan J. Smith Telescope

Alexander A. Breier, New Opportunities for Fundamental Research with Radioactive Molecules 3 Radioactive atoms in space

ESA/Hubble & NASA

Suntzeff et al ApJ 384 L33 (1992)

2.7 m (107") Harlan J. Smith Telescope

Alexander A. Breier, New Opportunities for Fundamental Research with Radioactive Molecules 3 Radioactive atoms in space

ESA/Hubble & NASA

Suntzeff et al ApJ 384 L33 (1992)

2.7 m (107") Harlan J. Smith Telescope

Alexander A. Breier, New Opportunities for Fundamental Research with Radioactive Molecules 3 Radioactive atoms in space

Alexander A. Breier, New Opportunities for Fundamental Research with Radioactive Molecules 4 Radioactive atoms in space

X-Ray telescope: NuSTAR • Single photon event wrt τ

• Photon energy range: keV - MeV • Spatial resolution: >10“

Alexander A. Breier, New Opportunities for Fundamental Research with Radioactive Molecules 4 Radioactive atoms in space 44Ti 5´

Cas A

Mean lifetime τ = 85 y Spatial resolution Objects

Alexander A. Breier, New Opportunities for Fundamental Research with Radioactive Molecules 5 Radioactive atoms in space 44Ti 26Al 5´

Cas A

Bouchet et al., ApJ 801, 142 (2015)

Mean lifetime τ = 85 y τ = 1.0 My Spatial resolution Objects Regions

Alexander A. Breier, New Opportunities for Fundamental Research with Radioactive Molecules 5 Radioactive atoms in space 44Ti 26Al 60Fe

5´ Wang et al., A&A 469, 1005 (2007)

Cas A

Bouchet et al., ApJ 801, 142 (2015)

Mean lifetime τ = 85 y τ = 1.0 My τ = 3.8 My Spatial resolution Objects Regions vanishing

Alexander A. Breier, New Opportunities for Fundamental Research with Radioactive Molecules 5 Radioactive atoms in space 44Ti 26Al 60Fe

5´ Wang et al., A&A 469, 1005 (2007)

Cas A

Bouchet et al., ApJ 801, 142 (2015) Mean lifetime increases τ = 85 y τ = 1.0 My τ = 3.8 My Spatial resolution increases Objects Regions vanishing

Alexander A. Breier, New Opportunities for Fundamental Research with Radioactive Molecules 5 From MeV to meV

MeV

Alexander A. Breier, New Opportunities for Fundamental Research with Radioactive Molecules 6 From MeV to meV

MeV

Interferometric radiotelescope: meV

• Continuous photon flux Frequency range: 80 - 950 GHz Spatial resolution: >0,01‘‘ (26Al:26AlF ≙ 1 : 1012)

Alexander A. Breier, New Opportunities for Fundamental Research with Radioactive Molecules 6 From MeV to meV

MeV

Interferometric radiotelescope: meV

• Continuous photon flux Frequency range: 80 - 950 GHz Spatial resolution: >0,01‘‘ (26Al:26AlF ≙ 1 : 1012)

Alexander A. Breier, New Opportunities for Fundamental Research with Radioactive Molecules 6 Galactic 26Al distribution

26 m Al = 2.8(8) × M total ⨀ Credit: ESA/Gaia/DPAC & Plüschke (2001)

Alexander A. Breier, New Opportunities for Fundamental Research with Radioactive Molecules 7 Galactic 26Al distribution

‘Inner ‘ Cygnus

Orion

26 m Al = 2.8(8) × M total ⨀ Credit: ESA/Gaia/DPAC & Plüschke (2001)

Alexander A. Breier, New Opportunities for Fundamental Research with Radioactive Molecules 7 Galactic 26Al distribution

‘Inner Galaxy‘ Cygnus CK Vul Orion

X

26 m Al = 2.8(8) × M total ⨀ Credit: ESA/Gaia/DPAC & Plüschke (2001)

Alexander A. Breier, New Opportunities for Fundamental Research with Radioactive Molecules 7 CK Vulpeculae (CK Vul)

Key facts • 1671(1) CK Vul outburst observed

• ‘Red’ object

Alexander A. Breier, New Opportunities for Fundamental Research with Radioactive Molecules 8 CK Vulpeculae (CK Vul)

Key facts • 1671(1) CK Vul outburst observed • 1982 Bipolar was found • ‘Red’ nova object • 27 molecules detected containing H, C, N, O, F, Al, Si, P, S

Nature 520, 322 (2015)

Alexander A. Breier, New Opportunities for Fundamental Research with Radioactive Molecules 8 CK Vulpeculae (CK Vul)

Key facts • 1671(1) CK Vul outburst observed • 1982 Bipolar nebula was found • ‘Red’ nova object • 27 molecules detected containing H, C, N, O, F, Al, Si, P, S

Isotopic ratios CK Vul Solar 12C/13C ∼3 ∼89 14N/15N ∼16 ∼272 16O/18O ∼36 ∼499 28Si/29Si ∼7 ∼20 Nature 520, 322 (2015)

Alexander A. Breier, New Opportunities for Fundamental Research with Radioactive Molecules 8 Molecule: 27AlF

Spectroscopic facts Astronomical observation

Observed in Lab since 1939 • C-rich environment: IRC+10216 8 transitions 2σ22π4 Valence conf. • Planetary nebular: CRL 2688 Ground state X 1Σ+ 3 transitions Dipole moment [D] 1.53 Nuclear spin I (27Al/19F) 2.5/0.5 Q(27Al) [mb] 147(1)

Molecular parameterization

Dunham parameterization

Alexander A. Breier, New Opportunities for Fundamental Research with Radioactive Molecules 9 Molecule: 27AlF

Spectroscopic facts Astronomical observation +2.4 kmΤ Observed in Lab since 1939 • T푒푥 = 12.9−1.8K; Line width:∼ 140 s Valence conf. 2σ22π4 Ground state X 1Σ+ Dipole moment [D] 1.53 Nuclear spin I (27Al/19F) 2.5/0.5 Q(27Al) [mb] 147(1)

Molecular parameterization

Dunham parameterization

ń

Alexander A. Breier, New Opportunities for Fundamental Research with Radioactive Molecules 9 Mass-independent description of AlF

AlF

U01 = 184655.12(23) MHz ∙ u BO re = 1.65435196(103) Å

A B AB ΔU01 ΔU01 BF -1.84(6) -1.4* AlF [theo] [-0.96] [-1.45] GaF -0.66(20) -1.5* Using wobble-stretch theory

I (26Al/19F) 5/0.5 Q(26Al) [mb] 265(32) →Reducing uncertainty from 10-5 to 10-7

Alexander A. Breier, New Opportunities for Fundamental Research with Radioactive Molecules 10 Mass-independent description of AlF Astronomical observation AlF

U01 = 184655.12(23) MHz ∙ u BO re = 1.65435196(103) Å

A B AB ΔU01 ΔU01 BF -1.84(6) -1.4* AlF [theo] [-0.96] [-1.45] GaF -0.66(20) -1.5* Using wobble-stretch theory

I (26Al/19F) 5/0.5

Q(26Al) [mb] 265(32) ń

Alexander A. Breier, New Opportunities for Fundamental Research with Radioactive Molecules 10 Mass-independent description of AlF Astronomical observation AlF

U01 = 184655.12(23) MHz ∙ u BO re = 1.65435196(103) Å

A B AB ΔU01 ΔU01 BF -1.84(6) -1.4* AlF -0.97(6) -1.2* [theo] [-0.96] [-1.45] GaF -0.66(20) -1.5* Using wobble-stretch theory

I (26Al/19F) 5/0.5

Q(26Al) [mb] 265(32) ń

Alexander A. Breier, New Opportunities for Fundamental Research with Radioactive Molecules 10 Why so much 26AlF ?

The origin of 26Al

+0.5 15 −2

N27 = 3.0−0.6 × 10 cm Vul +3.2

N27ΤN26 = 7.1−2.2 CK CK

Nഥ27ΤNഥ26 ≈ 120000 AGB

Alexander A. Breier, New Opportunities for Fundamental Research with Radioactive Molecules 11 Why so much 26AlF ?

Merging scenario

• Stellar Merger: two low mass star being one in the RGB phase ń

Alexander A. Breier, New Opportunities for Fundamental Research with Radioactive Molecules 11 Why so much 26AlF ?

Merging scenario

• Stellar Merger: two low mass star being one in the RGB phase ń Or

• Merger event between a white and

Alexander A. Breier, New Opportunities for Fundamental Research with Radioactive Molecules 11 Are there more possible sources?

Credit: ESA/Gaia/DPAC & Plüschke (2001)

Alexander A. Breier, New Opportunities for Fundamental Research with Radioactive Molecules 12 Are there more possible sources?

SN Remnant

SN1987A

Credit: ESA/Gaia/DPAC & Plüschke (2001)

Alexander A. Breier, New Opportunities for Fundamental Research with Radioactive Molecules 12 Are there more possible sources?

CK Vul

SN Remnant

Merger nebula

SN1987A

Credit: ESA/Gaia/DPAC & Plüschke (2001)

Alexander A. Breier, New Opportunities for Fundamental Research with Radioactive Molecules 12 Are there more possible sources?

CK Vul h Car

SN Remnant

Merger nebula

Massive star

SN1987A

Credit: ESA/Gaia/DPAC & Plüschke (2001)

Alexander A. Breier, New Opportunities for Fundamental Research with Radioactive Molecules 12 Are there more possible sources?

CK Vul h Car

SN Remnant

Merger nebula

Massive star

Hidden merger Kamiński et al A&A 646, A1 (2021)

SN1987A

Credit: ESA/Gaia/DPAC & Plüschke (2001)

Alexander A. Breier, New Opportunities for Fundamental Research with Radioactive Molecules 12

Stellar environments: Astrochemistry

Credit : NASA/ESA/R. HumphreysNASA/ESA/R. :

C/O <1

Guélin Guélin

L102 L102 (2010)

720

et et al

ApJL A&A 610, A4(2018)

C/O >1 al et E. D. D. TenenbaumE.

Alexander A. Breier, New Opportunities for Fundamental Research with Radioactive Molecules 13

Stellar environments: Astrochemistry

Credit : NASA/ESA/R. HumphreysNASA/ESA/R. :

C/O <1 Prescision demand: ∆휈 −7 −9

Guélin Guélin ~10 ⋯ 10

휈 L102 (2010)

720

et et al

ApJL A&A 610, A4(2018)

C/O >1 al et E. D. D. TenenbaumE.

Alexander A. Breier, New Opportunities for Fundamental Research with Radioactive Molecules 13

Further Molecular Species

A&A 637, A59 (2020)

, ,

et al Agúndez

Höfner, S., Olofsson, H. Astron Astrophys Rev 26, 1 (2018).

Alexander A. Breier, New Opportunities for Fundamental Research with Radioactive Molecules 14

Further Molecular Species

A&A 637, A59 (2020)

, ,

et al Agúndez

Höfner, S., Olofsson, H. Astron Astrophys Rev 26, 1 (2018).

Alexander A. Breier, New Opportunities for Fundamental Research with Radioactive Molecules 14

Further Molecular Species

A&A 637, A59 (2020)

, ,

et al Agúndez

Höfner, S., Olofsson, H. Astron Astrophys Rev 26, 1 (2018).

Alexander A. Breier, New Opportunities for Fundamental Research with Radioactive Molecules 14 Further Molecular Species Radioactive diatomic molecules

26AlO 44TiO 26AlF 60FeO

scalable

A&A 637, A59 (2020)

, ,

et al Agúndez

Höfner, S., Olofsson, H. Astron Astrophys Rev 26, 1 (2018).

Alexander A. Breier, New Opportunities for Fundamental Research with Radioactive Molecules 14

Further Molecular Species

A&A 637, A59 (2020)

, ,

et al Agúndez

Höfner, S., Olofsson, H. Astron Astrophys Rev 26, 1 (2018).

Alexander A. Breier, New Opportunities for Fundamental Research with Radioactive Molecules 14

Further Molecular Species

A&A 637, A59 (2020)

, ,

et al Agúndez

Höfner, S., Olofsson, H. Astron Astrophys Rev 26, 1 (2018).

Alexander A. Breier, New Opportunities for Fundamental Research with Radioactive Molecules 14 Further Molecular Species Radioactive polyatomic molecules

26 44 AlOH TiO2 26 60 Al2O Fe(OH)2

scalable

A&A 637, A59 (2020)

, ,

et al Agúndez

Höfner, S., Olofsson, H. Astron Astrophys Rev 26, 1 (2018).

Alexander A. Breier, New Opportunities for Fundamental Research with Radioactive Molecules 14 New opportunities: Laboratory astrophysics

26 44 60 26 32 32 C/O <1 AlOH TiO2 Fe(OH)2 Al2O Si2C SiC2 C/O >1

Alexander A. Breier, New Opportunities for Fundamental Research with Radioactive Molecules 15 Conclusion

• Radioactive molecule: as tracer for stellar dynamics

• Mass-independent description on diatomic molecules,…

A&A 637, A59 (2020) A59 637, A&A

, , et al et • …but radioactive polyatomic molecules need direct measurments Agúndez

26 44 60 26 32 32 C/O <1 AlOH TiO2 Fe(OH)2 Al2O Si2C SiC2 C/O >1

Alexander A. Breier, New Opportunities for Fundamental Research with Radioactive Molecules 16 Thank you

Johannes Gutenberg-Universität Mainz Harvard, Cambridge, USA MPIfR, Bonn J. Gauß T. Kamiński Karl Menten W. Schwalbach

Alexander A. Breier, New Opportunities for Fundamental Research with Radioactive Molecules 17