Biochemistry Lipids-Oxidation V

Biochemistry Lipids-Oxidation V

Paper : 05 Metabolism of Lipids Module: 25 Oxidation of Lipids V Principal Investigator Dr. Sunil Kumar Khare, Professor, Department of Chemistry, IIT-Delhi Paper Coordinator and Dr. Suaib Luqman, Scientist (CSIR-CIMAP) Content Writer & Assistant Professor (AcSIR) CSIR-CIMAP, Lucknow Content Reviewer Prof. Prashant Mishra, Professor, Department of Biochemical Engineering andDr. Biotechnology, Vijaya Khader IIT-Delhi Dr. MC Varadaraj 1 METABOLISM OF LIPIDS Biochemistry Lipids-Oxidation V DESCRIPTION OF MODULE Subject Name Biochemistry Paper Name 05 Metabolism of Lipids Module Name/Title 25 Lipids-Oxidation V 2 METABOLISM OF LIPIDS Biochemistry Lipids-Oxidation V 1. Objectives To understand the Ketosis and ketone bodies formation How cholesterol is dilapidated What is the fate of phospholipids, sphingomyelin degradation 2. Concept Map 3 METABOLISM OF LIPIDS Biochemistry Lipids-Oxidation V 3. Description Ketone bodies and the Ketosis Phenomenon In the normal animal fatty acid degradation and synthesis proceed without significant accumulation of intermediates. Under some circumstances certain products accumulate in the blood which is traditionally but inaccurately termed “ketone bodies”. These are acetoacetic acid, β-hydroxybutyric acid and acetone. All these products stem from acetoacetyl CoA, a normal intermediate in the oxidation of fatty acid. Moreover it is readily formed by the reversal of the thiolase reaction. 2 Acetyl CoA Acetoacetyl Coa + CoA The major fate of acetoacetyl CoA in liver is conversion to β-hydroxy-β-methylglutaryl CoA, an important intermediate in the biogenesis of cholesterol and steroids and in the degradation of leucine. The two carbon fragments (acetyl-Co A) derived from β-oxidation may then enter the citric acid cycle for complete oxidation or they may recombine (condense) to form acetoacetyl-Co A (active acetoacetate) and other ketones. The production of ketone bodies under normal conditions is minimal rather acetyl-CoA condenses with oxaloacetate and enters the citric acid cycle for complete oxidation. Acetoacetyl-CoA is readily converted in the liver to free acetoacetic acid because this organ only contains deacylase. The free acetoacetic acid then diffuses into the blood and is carried to the peripheral tissues where it may then be oxidized. This is depicted in the figure below. 4 METABOLISM OF LIPIDS Biochemistry Lipids-Oxidation V Fate of Acetyl CoA and Acetoacetyl CoA β-Ketothiolase CH3-CO~S-CoA + CH3-CO~S-CoA CH3-CO-CH2-CO~S-CoA + CoA.SH 2 moles of acetyl CoA Acetoacetyl-CoA Free CoA Deacylase CH3-CO-CH2-CO~S-CoA CH3-CO-CH2-COOH + CoA.SH Liver only Acetoacetyl-CoA Free acetoacetic acid CH3-CO-CH 2-CO~S-CoA + CH3-CO-CH 2-CO~S-CoA + H2O COOH-CH2-C-(OH) (CH3)- CH 2-CO~S-CoA + CoA.SH 5 METABOLISM OF LIPIDS Biochemistry Lipids-Oxidation V 6 METABOLISM OF LIPIDS Biochemistry Lipids-Oxidation V Pathways of Ketogenesis in Liver Although the parent compound of the ketone bodies, acetoacetyl CoA, is a normal intermediate in both fatty acid degradation and cholesterol synthesis, certain facets of its metabolism merit special mention, particularly because of its importance in ketosis. In figure some of the primary interrelationships of lipid metabolism are shown. The key factors would appear to be the central role of acetyl CoA and β-hydroxy-β-methylglutaryl CoA. In the case of acetyl CoA, the three major fates are oxidation cia the citric acid cycle, formation of acetoacetyl CoA, and synthesis of fatty acids, primarily via the malonyl CoA pathway. The release of acetoacetate by liver is a continuing normal process. The total ketone body concentration in blood, expressed as β-hydroxybutyrate, is normally 1mg per 100 mL and the average total daily excretion in the urine is approximately 20mg. This is because of efficient mechanism for removal of acetoacetic acid by peripheral tissues, especially muscle which can derive a sizable fraction of its total energy requirement from this nutrient. In order to be utilized acetoacetic acid must first be reconverted into its CoA derivative by transfer of a CoA residue from succinyl CoA by the action of a specific thiophorase. The acetoaceyl Coa thus formed may then be cleaved by thiolase yielding two molecules of acetyl CoA which then enter the citric acid cycle. 7 METABOLISM OF LIPIDS Biochemistry Lipids-Oxidation V Ketone Bodies Synthesis in Liver and its Use in Peripheral Tissues An elevation of the concentration of ketone bodies in the blood above normal levels is called ketonemia. If the blood level exceeds the renal threshold and appreciable amounts of ketone bodies appear in the urine, ketonuria is said to exist. Of the ketone bodies, acetone alone has a significant vapour pressure, and whenever a marked degree of ketonemia and ketonuria exist, the odor of acetone is likely to be detected in the exhaled air. This triad of ketonemia, ketonuria and acetone odor of the breath is commonly termed ketosis. Causes of Ketosis A diminution in the quantity of carbohydrate catabolised may cause ketosis. Perhaps the most readily understood condition is starvation. When no food is allowed, the organism rapidly consumes its own stores of glycogen in the liver, and thereafter it survives largely upon energy derived from its depot lipid. A starvation result in a lipemia which reflects migration of excessive quantities of lipid from the depots to the liver, and this in turn produces a fatty liver. The degradation of fatty acids in the liver proceeds at greater than usual rate. As a consequence, there is a pleothora of acetoacetyl Coa, which results in an excess of acetoacetate and its products, acetone and β-hydroxybutyrate. Ketone incident to starvation is most frequently encountered clinically in gastrointestinal disturbances in infancy or pregnancy. 8 METABOLISM OF LIPIDS Biochemistry Lipids-Oxidation V Ketone Bodies: Formation, Utilization and Excretion 9 METABOLISM OF LIPIDS Biochemistry Lipids-Oxidation V Cholesterol Degradation Direct degradation of cholesterol does not occur because of the ring structure, therefore its elimination is the possible way to regulate it yet before elimination it is converted to bile acids and bile salts which are excreted through feces. Little cholesterol is modified by bacteria before excretion in the intestine. A large portion of the cholesterol in lymph and in blood plasma is found in chylomicra. 10 METABOLISM OF LIPIDS Biochemistry Lipids-Oxidation V Structure of cholesterol and its ester Since the dispersed fate of these fat droplets is due chiefly to their content in phosphatide, it is not surprising that the ratio of phosphatide to cholesterol in the blood remains fairly constant. Of the cholesterol in plasma, roughly to thirds exists esterified with fatty acids. The maintenance of this ratio is a function of liver, and decreases in this value due to lowering of cholesterol ester concentration are seen in liver disease. The liver serves both as the chief synthetic source and the chief agent for disposal of plasma cholesterol, a portion of that removed from the blood appearing in the bile. Enterohepatic circulation of bile salts and bile acids Though sparingly soluble in water, cholesterol readily dissolves in aqueos bile salt solutions, probably because of the formation of choleric acids, soecific coordination compounds of bile acids and sterols. In the gall bladder, both water and bile salts are reabsorbed by the action of the cholecystic mucosa and if this process continues excessively, cholesterol crystals separate from the bile. Either biliary stasis or inflammatory disease of the gall bladder can lead to this situation. Concretions made of chiefly of cholesterol crystals are among the common 11 METABOLISM OF LIPIDS Biochemistry Lipids-Oxidation V calculi of the biliary duct, the disease being termed cholelithiasis. Such calculi in the gall bladder may be undetected (silent), but if they descend the biliary tract and particularly if they occlude the common bile duct, a variety of clinically important events ensue. Cholesterol enters the intestinal tract by direct excretion across the intestinal mucosa as well as via the bile. In the lumen of the gut a portion is reduced microbially to coprosterol via the following steps and thereby excluded from reabsorption. Catabolism of Cholesterol Conversion to bile acids Only a fraction of the cholesterol metabolized daily is excreted as sterols in the faeces. Virtually none appears in the urine. It emerges that cholesterol serves as precursors for a variety of biologically important structurally related steroids. Gallbladder with gallstones 12 METABOLISM OF LIPIDS Biochemistry Lipids-Oxidation V Approximately 80% of the cholesterol metabolized is transformed by liver tissues into various bile acids. Experimental evidence indicates that hydroxylation of cholesterol is more or less completed before the degradation of the side chain is finished. Synthesis of HMG-CoA 13 METABOLISM OF LIPIDS Biochemistry Lipids-Oxidation V 14 METABOLISM OF LIPIDS Biochemistry Lipids-Oxidation V Degradation of Phospholipids Phosphoglyceride degradation occurs by the action of phospholipase. Phospholipases serve as messenger for example IP3 and DAG or arachidonic acid which is acted by COX and LOX to generate a variety of signaling molecules. Phospholipase A1 and A2 cleave fatty acids from membrane bound phospholipids that can be replaced by different fatty acid through the catalysis of fatty acyl CoA transferase. This mode is one of the route to create unique lung surfactant, DPCC [Dipalmitoylphosphatidylcholine].

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    16 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us