Health Effects of Artificial Light Scientific Committee on Emerging and Newly Identified Health Risks SCENIHR Health Effects of Artificial Light The SCENIHR adopted this opinion at its 17th plenary meeting on 19 March 2012 1 Health Effects of Artificial Light About the Scientific Committees Three independent non-food Scientific Committees provide the Commission with the scientific advice it needs when preparing policy and proposals relating to consumer safety, public health and the environment. The Committees also draw the Commission's attention to the new or emerging problems which may pose an actual or potential threat. They are: the Scientific Committee on Consumer Safety (SCCS), the Scientific Committee on Health and Environmental Risks (SCHER) and the Scientific Committee on Emerging and Newly Identified Health Risks (SCENIHR) and are made up of external experts. In addition, the Commission relies upon the work of the European Food Safety Authority (EFSA), the European Medicines Agency (EMA), the European Centre for Disease prevention and Control (ECDC) and the European Chemicals Agency (ECHA). SCENIHR This Committee deals with questions related to emerging or newly identified health and environmental risks and on broad, complex or multidisciplinary issues requiring a comprehensive assessment of risks to consumer safety or public health and related issues not covered by other Community risk assessment bodies. Examples of potential areas of activity include potential risks associated with interaction of risk factors, synergic effects, cumulative effects, antimicrobial resistance, new technologies such as nanotechnologies, medical devices including those incorporating substances of animal and/or human origin, tissue engineering, blood products, fertility reduction, cancer of endocrine organs, physical hazards such as noise and electromagnetic fields (from mobile phones, transmitters and electronically controlled home environments), and methodologies for assessing new risks. It may also be invited to address risks related to public health determinants and non-transmissible diseases. Scientific Committee members Anssi Auvinen, James Bridges, Kenneth Dawson, Wim De Jong, Philippe Hartemann, Arne Hensten, Peter Hoet, Thomas Jung, Mats-Olof Mattsson, Hannu Norppa, Jean-Marie Pagès, Ana Proykova, Eduardo Rodríguez-Farré, Klaus Schulze-Osthoff, Joachim Schüz, Mogens Thomsen, Theo Vermeire Contact: European Commission DG Health & Consumers Directorate D: Health Systems and Products Unit D3 - Risk Assessment Office: B232 08/015 B-1049 Brussels [email protected] © European Union, 2012 ISSN 1831-4783 ISBN 978-92-79-26314-9 doi:10.2772/8624 ND-AS-12-002-EN-N The opinions of the Scientific Committees present the views of the independent scientists who are members of the committees. They do not necessarily reflect the views of the European Commission. The opinions are published by the European Commission in their original language only. http://ec.europa.eu/health/scientific_committees/policy/index_en.htm 2 Health Effects of Artificial Light ACKNOWLEDGMENTS Members of the working group are acknowledged for their valuable contribution to this opinion. The members of the working group are: SCENIHR members: Prof. Mats-Olof Mattsson (Chair and Rapporteur) Dr. Thomas Jung Prof. Ana Proykova External experts: Prof. Francine Behar-Cohen, Hôtel-Dieu de Paris, Université Paris Descartes, INSERM UMRS 872, Paris, France Dr. Frank de Gruijl, Department of Dermatology, Leiden University Medical Centre, Leiden, the Netherlands Prof. James Ferguson, Photobiology Unit, Ninewells Hospital, Dundee, UK Dr. Johnni Hansen, Institute of Cancer Epidemiology, Danish Cancer Society, Copenhagen, Denmark Prof. Harry Moseley, Photobiology Unit, University of Dundee, Ninewells Hospital & Medical School, Dundee, UK Prof. Georges Zissis, Université Paul Sabatier, Toulouse, France The additional contribution of the following experts is gratefully acknowledged: Dr. Claude Gronfier, INSERM U846 - Stem Cell and Brain Research Institute, Department of Chronobiology, Bron, France Dr. Dieter Kunz, St. Hedwig-Hospital, Charité University, Berlin, Germany Dr Graham Byrnes, International Agency for Research on Cancer, France All Declarations of working group members and supporting experts are available at the following webpage: http://ec.europa.eu/health/scientific_committees/emerging/members_wg/index_en.htm 3 Health Effects of Artificial Light ABSTRACT A: Potential health impacts on the general public caused by artificial light In general, the probability is low that artificial lighting for visibility purposes induces acute pathologic conditions, since expected exposure levels are much lower than those at which effects normally occur, and are also much lower than typical daylight exposures. Certain lamp types (including also incandescent light bulbs) may emit low level UV radiation. According to a worst case scenario the highest measured UV emissions from lamps used in offices and schools, but not the very low emissions lamps used for household lighting, could add to the number of squamous cell carcinomas in the EU population. There is no evidence that blue light from artificial lighting belonging to Risk Group 0 ("exempt from risk") would have any impact on the retina graver than that of sunlight. Blue light from improperly used lamps belonging to Risk Groups 1, 2, or 3 could, in theory, induce photochemical retinal. There is no evidence that this constitutes a risk in practice. Other damages to the eye from chronic artificial light exposure during normal lighting conditions are unlikely. Exposure to light at night (independent of lighting technology) while awake (e.g. shift work) may be associated with an increased risk of breast cancer and also cause sleep, gastrointestinal, mood and cardiovascular disorders. B: Aggravation of the symptoms of pathological conditions UV, and in some patients, visible light can induce skin lesions of true photodermatoses. Although sunlight is reported by most patients as the main trigger of disease activity, artificial lighting is reported to play a role in some cases. The blue or UV components of light tend to be more effective than red components in aggravating skin disease symptoms related to pre-existing conditions such as lupus erythematosus, chronic actinic dermatitis and solar urticaria. UV and/or blue light could also possibly aggravate the systemic form of lupus erythematosus. It is recommended that all patients with retinal dystrophy should be protected from light by wearing special protective eyeware that filters the shorter and intermediate wavelengths. The previous SCENIHR opinion on Light Sensitivity stated that modern CFLs are basically flicker-free due to their electronic high frequency ballasts. However, some studies indicated that perceivable flicker can occur during certain conditions with both CFLs and incandescent lamps. This statement is still valid. There is no scientific evidence available to evaluate if conditions such as Irlen-Meares syndrome, myalgic encephalomyelitis, fibromyalgia, dyspraxia, autism, and HIV are influenced by the lighting technologies considered in this opinion. C: Risk estimates and mitigations Short-term UV effects from artificial lighting on healthy people are thought to be negligible. A proper assessment of long-term risks due to daily low level UV exposure is not possible since relevant exposure data are lacking. A worst case scenario, with assumptions of validity in extrapolation from animal to studies to human conditions, involved workplace/school exposure to double- or single-capped fluorescent lamps with the highest identified UV radiation. Such exposure may add to the annual UV dose (e.g. comparable to the increased dose obtained during an annual one week vacation in a sunny location), and increase the risk of squamous cell carcinomas correspondingly. Improper use of lamps belonging to Risk Groups 1-3 could cause retinal damage, which would be avoidable with appropriate measures. 4 Health Effects of Artificial Light The current standardization of lighting lamps and luminaires in four risk categories appears sufficient to limit the personal short-term risk. However, Risk Group 0 should not be taken to imply adequate protection of the general population as a whole from long- term UV-exposure effects. There are a number of patients (around 250,000 EU citizens; SCENIHR 2008) that are exceptionally sensitive to UV/blue light exposure. The risk for this group of patients includes all light sources with significant UV/blue light emissions. It may be advisable to make sufficient information on the emitted spectrum for individual lamp models available to the healthcare professionals and the patients to allow them to choose their lighting solutions optimally. D: Potential research needs Several areas where relevant data are lacking regarding the effects of specific lighting technologies on medical conditions have been identified. The most important areas where knowledge gaps have to be filled in order to be able to draw firm conclusions are outlined in the opinion. Keywords: artificial light, incandescent lamps, fluorescent lamps, compact fluorescent lamps, halogen lamps, LED, public health, human health, SCENIHR, Scientific Committee on Emerging and Newly Identified Health Risks Opinion to be cited as: SCENIHR (Scientific Committee on Emerging and Newly Identified Health Risks), Health effects of artificial light, 19 March 2012 5 Health Effects of Artificial Light TABLE
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages118 Page
-
File Size-