Carbon Capture by Physical Adsorption: Materials, Experimental Investigations and Numerical Modeling and Simulations – a Review ⇑ R

Carbon Capture by Physical Adsorption: Materials, Experimental Investigations and Numerical Modeling and Simulations – a Review ⇑ R

Applied Energy 161 (2016) 225–255 Contents lists available at ScienceDirect Applied Energy journal homepage: www.elsevier.com/locate/apenergy Review Carbon capture by physical adsorption: Materials, experimental investigations and numerical modeling and simulations – A review ⇑ R. Ben-Mansour, M.A. Habib , O.E. Bamidele, M. Basha, N.A.A. Qasem, A. Peedikakkal, T. Laoui, M. Ali Mechanical Engineering Department and KACST-TIC on CCS, KFUPM, Dhahran 31261, Saudi Arabia highlights A review on carbon capture by physical adsorption is provided. The review covers carbon capture materials, experimental and numerical research. Challenges for the post combustion adsorption materials are presented. Gaps are found in the research of carbon dioxide adsorption of post-combustion. Materials of high selectivity, CO2 uptake with water vapor stability are needed. article info abstract Article history: This review focuses on the separation of carbon dioxide from typical power plant exhaust gases using the Received 4 May 2015 adsorption process. This method is believed to be one of the economic and least interfering ways for post- Received in revised form 13 September combustion carbon capture as it can accomplish the objective with small energy penalty and very few 2015 modifications to power plants. The review is divided into three main sections. These are (1) the candidate Accepted 2 October 2015 materials that can be used to adsorb carbon dioxide, (2) the experimental investigations that have been Available online 22 October 2015 carried out to study the process of separation using adsorption and (3) the numerical models developed to simulate this separation process and serve as a tool to optimize systems to be built for the purpose of Keywords: CO adsorption. The review pointed the challenges for the post combustion and the experiments utilizing Carbon capture 2 Adsorption techniques the different adsorption materials. The review indicates that many gaps are found in the research of CO2 Post-combustion adsorption of post-combustion processes. These gaps in experimental investigations need a lot of Experimental studies research work. In particular, new materials of high selectivity, uptake for carbon dioxide with stability Numerical investigations for water vapor needs significant investigations. The major prerequisites for these potential new materi- als are good thermal stability, distinct selectivity and high adsorption capacity for CO2 as well as suffi- cient mechanical strength to endure repeated cycling. Ó 2015 Elsevier Ltd. All rights reserved. Contents 1. Introduction . ...................................................................................................... 227 2. Post-Combustion carbon capture technologies . ................................................................ 228 2.1. Adsorption . ......................................................................................... 229 2.1.1. CO2 capture using chemical sorbents . ........................................................... 229 2.1.2. CO2 capture using physical sorbents . ........................................................... 229 2.2. Adsorption process types ......................................................................................... 230 3. Materials for adsorption carbon capture . ................................................................ 230 3.1. Introduction. ......................................................................................... 230 3.2. Porous materials . ......................................................................................... 231 3.3. Carbon based adsorbents ......................................................................................... 232 3.4. Solid materials. ......................................................................................... 232 ⇑ Corresponding author. Tel.: +966 138604467; fax: +966 138602949. E-mail address: [email protected] (M.A. Habib). http://dx.doi.org/10.1016/j.apenergy.2015.10.011 0306-2619/Ó 2015 Elsevier Ltd. All rights reserved. 226 R. Ben-Mansour et al. / Applied Energy 161 (2016) 225–255 Nomenclature 3 CF,j feed concentration of component j (mol m ) qm;j Toth model parameter for amount of component j Cj gas phase concentration of component j (mol m3) adsorbed in activated carbon at equilibrium (mol/kg) Cv;g specific heat at constant volume for gas mixture t time of adsorption/desorption (s) À1 À1 (J kg K ) tst stoichiometric time (s) Cp;g specific heat at constant pressure for gas mixture Ts temperature of solid adsorbent (K) À1 À1 (J kg K ) Tw temperature of column wall (K) À1 À1 Cs specific heat capacity of solid adsorbent (J kg K ) Tg gas mixture temperature (K) Cp;w specific heat capacity of adsorption column wall U superficial velocity of the gas mixture (m/s) (J kgÀ1 KÀ1) ux-component of the superficial velocity of the gas mix- 2 Dax axial dispersion coefficient (m /s) ture (m/s) dp adsorbent particle diameter (m) v y-component of the superficial velocity of the gas mix- dint adsorption bed diameter (m) ture (m/s) e adsorption bed void fraction wz-component of the superficial velocity of the gas mix- ÀDHj enthalpy of component j in gas mixture (kJ/mol) ture (m/s) 3 hf film heat transfer coefficient between the gas and solid V adsorption bed volume (m ) À2 À1 adsorbent (W m K ) yj mole fraction of component j in gas mixture hw internal convective heat transfer coefficient between À2 À1 the gas and the column wall (W m K ) Greek Letters À1 ; KL j overall mass transfer coefficient of component j (s ) aw the ratio of the internal surface area to the volume of À1 Ko;j adsorption constant of component j at infinite dilution adsorption column wall density (m ) (PaÀ1) awl the ratio of the algorithm mean surface area of the l column wall thickness (m) column shell to the volume of the column wall (mÀ1) n polytropic index e adsorption bed void fraction P total pressure of gas mixture (Pa) kL thermal conductivity of gas of the gas mixture in axial À1 À1 Pj partial pressure of component j in gas mixture (Pa) direction (W m K ) 3 À1 QF feed volumetric flow rate of gas mixture (m /s) l g dynamic viscosity of gas mixture (Pa s ) q average amount of adsorbed of component j (mol/kg) q 3 j g gas mixture density (kg/m ) qà the amount of component j adsorbed at equilibrium q 3 j p adsorbent particle density (kg/m ) (mol/kg) q 3 w adsorption column wall density (kg/m ) 3.5. Adsorption of CO2 by carbon nanotubes (CNTs) . ............................................................ 232 3.6. Metal organic frameworks (MOFs). ............................................................................ 233 3.7. Comparison of different CO2 adsorbents . ............................................................................ 234 4. Experimental studies on adsorption carbon capture . ...................................................................... 234 4.1. Introduction. ............................................................................................... 234 4.2. Experimental studies on adsorption by MOFs . ............................................................ 234 4.2.1. Adsorption desorption regeneration . ................................................................. 236 4.2.2. Adsorption and kinetic studies . ................................................................. 236 4.2.3. Temperature swing adsorption methods . ................................................................. 237 4.2.4. Performance in presence of water vapor . ................................................................. 237 4.3. Experimental studies on adsorption by zeolites . ............................................................ 237 4.3.1. Pressure swing adsorption process . ................................................................. 237 4.3.2. Vacuum swing adsorption ................................................................................. 238 4.3.3. Zeolite testing under humid conditions . ................................................................. 238 4.4. Experimental studies on adsorption by carbon-based materials . ......................................... 239 4.4.1. Activated carbon. ................................................................................. 239 4.4.2. Carbon fibre composites. ................................................................................. 239 4.5. Other experimental studies on adsorption . ............................................................ 240 4.5.1. Regeneration process techniques. ................................................................. 240 4.5.2. Adsorbent packing processes . ................................................................. 240 4.6. Concluding remarks . ............................................................................ 241 5. Numerical investigations and mathematical models for fixed bed column adsorption. ................................ 241 5.1. Introduction. ............................................................................................... 241 5.2. Some existing mathematical models . ............................................................................ 242 5.2.1. CO2 in a binary mixture (with CH4, N2,H2 orHe).............................................................. 242 5.2.2. CO2 mixture (with CH4 and H2)............................................................................. 244 5.2.3. CO2 (with Air) . ................................................................................. 244 5.2.4.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    31 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us