A Naive Approach to Tensors on Manifolds

A Naive Approach to Tensors on Manifolds

A naive approach to Tensors on Manifolds Cho, Yong-Hwa Department of Mathematical Sciences, KAIST 1 / 35 Manifolds? 2 / 35 Manifolds? 2 / 35 Manifolds? 2 / 35 = Topological Nature 3 / 35 Topological Nature = 3 / 35 \Flat Space" Rescaling the plane Studying Manifolds: How? 4 / 35 \Flat Space" Rescaling the plane Studying Manifolds: How? 4 / 35 \Flat Space" Rescaling the plane Studying Manifolds: How? 4 / 35 \Flat Space" Studying Manifolds: How? Rescaling the plane 4 / 35 Studying Manifolds: How? \Flat Space" Rescaling the plane 4 / 35 = 126 \Oriented Line density" Vectors and Covectors (2D) · ? = Scalar 5 / 35 Scalar = 12 \Oriented Line density" Vectors and Covectors (2D) · ? = = 6 5 / 35 Scalar = 6 \Oriented Line density" Vectors and Covectors (2D) · ? = = 12 5 / 35 Scalar = 12 Vectors and Covectors (2D) · ? = = 6 \Oriented Line density" 5 / 35 Codimension 1 oriented plane density · = = 3 Dimension 1 oriented plane capacity Vectors and Covectors (3D) 6 / 35 Codimension 1 oriented plane density Dimension 1 oriented plane capacity Vectors and Covectors (3D) · = = 3 6 / 35 Vectors and Covectors (3D) Codimension 1 oriented plane density · = = 3 Dimension 1 oriented plane capacity 6 / 35 Forms 2-form 3-form ! & "= " & = 2-vector 3-vector Multivectors Multivectors and Forms 1-form 1-vector 7 / 35 Forms 3-form " & = 3-vector Multivectors Multivectors and Forms 1-form 2-form ! & "= 1-vector 2-vector 7 / 35 Forms Multivectors Multivectors and Forms 1-form 2-form 3-form ! & "= " & = 1-vector 2-vector 3-vector 7 / 35 Multivectors and Forms Forms 1-form 2-form 3-form ! & "= " & = 1-vector 2-vector 3-vector Multivectors 7 / 35 contravariant parts(vectors) covariant parts(forms) A tensor T with n covariant and m contravariant parts b1b2···bm Ta1a2···an !a !ab !abc v a v ab v abc Abstract Index Notation 8 / 35 contravariant parts(vectors) covariant parts(forms) !a !ab !abc v a v ab v abc Abstract Index Notation A tensor T with n covariant and m contravariant parts b1b2···bm Ta1a2···an 8 / 35 covariant parts(forms) !a !ab !abc v a v ab v abc Abstract Index Notation A tensor T with n covariant and m contravariant parts b1b2···bm contravariant parts(vectors) Ta1a2···an 8 / 35 contravariant parts(vectors) !a !ab !abc v a v ab v abc Abstract Index Notation A tensor T with n covariant and m contravariant parts b1b2···bm Ta1a2···an covariant parts(forms) 8 / 35 Abstract Index Notation A tensor T with n covariant and m contravariant parts b1b2···bm contravariant parts(vectors) Ta1a2···an covariant parts(forms) !a !ab !abc v a v ab v abc 8 / 35 Tensor product - different indicies, indicies determine the order: (~v ⊗ ~w =) v aw b = w bv a 6= v bw a (= ~w ⊗~v) Contraction - same index: a ~v · ! = v !a Contractions between tensors - indicies determine the contraction: c a c a c c (~v · T)b d = v Tab d 6= v Tba d = (~v · T)b d Index Notation, Tensor Products and Contractions 9 / 35 Contraction - same index: a ~v · ! = v !a Contractions between tensors - indicies determine the contraction: c a c a c c (~v · T)b d = v Tab d 6= v Tba d = (~v · T)b d Index Notation, Tensor Products and Contractions Tensor product - different indicies, indicies determine the order: (~v ⊗ ~w =) v aw b = w bv a 6= v bw a (= ~w ⊗~v) 9 / 35 Contractions between tensors - indicies determine the contraction: c a c a c c (~v · T)b d = v Tab d 6= v Tba d = (~v · T)b d Index Notation, Tensor Products and Contractions Tensor product - different indicies, indicies determine the order: (~v ⊗ ~w =) v aw b = w bv a 6= v bw a (= ~w ⊗~v) Contraction - same index: a ~v · ! = v !a 9 / 35 Index Notation, Tensor Products and Contractions Tensor product - different indicies, indicies determine the order: (~v ⊗ ~w =) v aw b = w bv a 6= v bw a (= ~w ⊗~v) Contraction - same index: a ~v · ! = v !a Contractions between tensors - indicies determine the contraction: c a c a c c (~v · T)b d = v Tab d 6= v Tba d = (~v · T)b d 9 / 35 = = a = v !ab = ~v · ! · = = 6 a ~v · ! = v !a · = = 9 ~ = 1 ab ~v · ! 2! v !ab · ~v · ! Tensor Algebra: Contractions of co and contra parts 10 / 35 = = a = v !ab = ~v · ! · = = 9 ~ = 1 ab ~v · ! 2! v !ab · ~v · ! Tensor Algebra: Contractions of co and contra parts · = = 6 a ~v · ! = v !a 10 / 35 = = a = v !ab = ~v · ! · ~v · ! Tensor Algebra: Contractions of co and contra parts · = = 6 a ~v · ! = v !a · = = 9 ~ = 1 ab ~v · ! 2! v !ab 10 / 35 = = a = v !ab = ~v · ! Tensor Algebra: Contractions of co and contra parts · = = 6 a ~v · ! = v !a · = = 9 ~ = 1 ab ~v · ! 2! v !ab · ~v · ! 10 / 35 = = ~v · ! Tensor Algebra: Contractions of co and contra parts · = = 6 a ~v · ! = v !a · = = 9 ~ = 1 ab ~v · ! 2! v !ab · = a ~v · ! = v !ab 10 / 35 Tensor Algebra: Contractions of co and contra parts · = = 6 a ~v · ! = v !a · = = 9 ~ = 1 ab ~v · ! 2! v !ab · = = a ~v · ! = v !ab = ~v · ! 10 / 35 ^ = = a b a?b b a (v ^ w)ab v ^ w = v w − v w = ^ = ? = !a ^ σb = !aσb − !bσa = (! ^ σ)ab Tensor Algebra: Exterior Product 11 / 35 = a b a?b b a (v ^ w)ab v ^ w = v w − v w = ? = !a ^ σb = !aσb − !bσa = (! ^ σ)ab Tensor Algebra: Exterior Product ^ = ^ = 11 / 35 a b a?b b a (v ^ w)ab v ^ w = v w − v w = ? = !a ^ σb = !aσb − !bσa = (! ^ σ)ab Tensor Algebra: Exterior Product ^ = = ^ = 11 / 35 a b a?b b a (v ^ w)ab v ^ w = v w − v w = ? !a ^ σb = !aσb − !bσa = (! ^ σ)ab Tensor Algebra: Exterior Product ^ = = ^ = = 11 / 35 ? ? Tensor Algebra: Exterior Product ^ = = ab v a ^ w b = v aw b − v bw a = (v ^ w) ^ = = !a ^ σb = !aσb − !bσa = (! ^ σ)ab 11 / 35 !a ^ σbc = !aσbc + !bσca + !cσab = (! ^ σ)abc Tensor Algebra: Exterior Product k-form ^ l-form = (k + l)-form ^ = = 12 / 35 Tensor Algebra: Exterior Product k-form ^ l-form = (k + l)-form ^ = = !a ^ σbc = !aσbc + !bσca + !cσab = (! ^ σ)abc 12 / 35 3 2 1 Tensor Fields: Scalar and Covector Fields 13 / 35 3 2 1 Tensor Fields: Scalar and Covector Fields 13 / 35 Tensor Fields: Scalar and Covector Fields 3 2 1 13 / 35 Space Compression r Incompatible r Example: Gradient field rφ Space Compression r~ r~ 14 / 35 Space Compression r r Example: Gradient field rφ Space Compression r~ Incompatible r~ 14 / 35 Incompatible Space Compression r~ r~ Example: Gradient field rφ Space Compression r r 14 / 35 r^ r^ = r ^ ! r^ = r ^ ! r ^ r^ = 0 Tensor Calculus: Exterior Differentiation r^ (=d) 15 / 35 = r ^ ! = r ^ ! r ^ r^ = 0 Tensor Calculus: Exterior Differentiation r^ (=d) r^ r^ r^ 15 / 35 r ^ ! r ^ ! r ^ r^ = 0 Tensor Calculus: Exterior Differentiation r^ (=d) r^ r^ = r^ = 15 / 35 = = r ^ ! r ^ r^ = 0 r^ Tensor Calculus: Exterior Differentiation r^ (=d) r^ r ^ ! 15 / 35 r^ = r ^ ! = r ^ ! r ^ r^ = 0 r^ Tensor Calculus: Exterior Differentiation r^ (=d) r^ 15 / 35 r^ r ^ ! r ^ ! r ^ r^ = 0 Tensor Calculus: Exterior Differentiation r^ (=d) r^ r^ = r^ = 15 / 35 = r ^ ! = r ^ r^ = 0 r^ r^ Tensor Calculus: Exterior Differentiation r^ (=d) r^ r ^ ! 15 / 35 = r ^ ! = r ^ ! r ^ r^ = 0 r^ r^ Tensor Calculus: Exterior Differentiation r^ (=d) r^ 15 / 35 r ^ ! r ^ ! Tensor Calculus: Exterior Differentiation r^ (=d) r^ r^ = r^ = r ^ r^ = 0 15 / 35 Z ! = 2 L Z ! = 3 S Tensor Calculus: Integration Integration of k-form fields over oriented k-dimensional surfaces: 16 / 35 Tensor Calculus: Integration Integration of k-form fields over oriented k-dimensional surfaces: Z ! = 2 L Z ! = 3 S 16 / 35 0+1+1−1+1−1+1 = 2 +1−1+1+0+1−1+1 = 2 Z Z r ^ k ! = k ! Sk+1 @Sk Stokes' Theorem Z r ^ ! = S Z ! = @S 17 / 35 +1+1−1+1−1+1 = 2 +1+0+1−1+1 = 2 Z Z r ^ k ! = k ! Sk+1 @Sk Stokes' Theorem +1 Z −1 r ^ ! = 0 S Z ! = +1−1 @S 17 / 35 +1−1+1−1+1 = 2 +0+1−1+1 = 2 Z Z r ^ k ! = k ! Sk+1 @Sk Stokes' Theorem +1 +1 Z r ^ ! = 0+1 S Z ! = +1−1+1 @S 17 / 35 +1−1+1 = 2 +1−1+1 = 2 Z Z r ^ k ! = k ! Sk+1 @Sk Stokes' Theorem +1 Z r ^ ! = 0+1+1−1 −1 S Z ! = +1−1+1+0 @S 17 / 35 +1 = 2 +1 = 2 Z Z r ^ k ! = k ! Sk+1 @Sk Stokes' Theorem Z r ^ ! = 0+1+1−1+1−1 S Z ! = +1−1+1+0+1−1 −1 +1 @S −1 +1 17 / 35 Z Z r ^ k ! = k ! Sk+1 @Sk Stokes' Theorem Z r ^ ! = 0+1+1−1+1−1+1 = 2 S Z ! = +1−1+1+0+1−1+1 = 2 +1 @S +1 17 / 35 Stokes' Theorem Z r ^ ! = 0+1+1−1+1−1+1 = 2 S Z ! = +1−1+1+0+1−1+1 = 2 @S Z Z r ^ k ! = k ! Sk+1 @Sk 17 / 35 the volume form n a1···an and the volume element n~ -1 1 · n~ -1= ( -1)a1···an = 1 n n! a1···an provide the unit density, volume and the space orientation. The volume of the manifold M: Z V (M) = n M Volume Form and Volume Element On the n dimensional orientable manifold, 18 / 35 The volume of the manifold M: Z V (M) = n M Volume Form and Volume Element On the n dimensional orientable manifold, the volume form n a1···an and the volume element n~ -1 1 · n~ -1= ( -1)a1···an = 1 n n! a1···an provide the unit density, volume and the space orientation.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    130 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us