The Case for Oversampling

The Case for Oversampling

EE247 Lecture 24 Oversampled ADCs – Why oversampling? – Pulse-count modulation – Sigma-delta modulation • 1-Bit quantization • Quantization error (noise) spectrum • SQNR analysis • Limit cycle oscillations –2nd order ΣΔ modulator • Dynamic range • Practical implementation – Effect of various nonidealities on the ΣΔ performance EECS 247 Lecture 24: Oversampling Data Converters © 2005 H. K. Page 1 The Case for Oversampling Nyquist sampling: Signal fs “narrow” “Nyquist” DSP transition fs >2B +δ ADC B Freq AA-Filter Sampler Oversampling: fs >> fN?? Signal “wide” Oversampled ADC DSP transition fs= MfN B Freq AA-Filter Sampler • Nyquist rate fN = 2B • Oversampling rate M = fs/fN >> 1 EECS 247 Lecture 24: Oversampling Data Converters © 2005 H. K. Page 2 Nyquist v.s. Oversampled Converters Antialiasing |X(f)| Input Signal frequency fB Nyquist Sampling f B fs 2fs frequency fS ~2fB Anti-aliasing Filter Oversampling fB fs frequency fS >> 2fB EECS 247 Lecture 24: Oversampling Data Converters © 2005 H. K. Page 3 Oversampling Benefits • No stringent requirements imposed on analog building blocks • Takes advantage of the availability of low cost, low power digital filtering • Relaxed transition band requirements for analog anti-aliasing filters • Reduced baseband quantization noise power • Allows trading speed for resolution EECS 247 Lecture 24: Oversampling Data Converters © 2005 H. K. Page 4 ADC Converters Baseband Noise Δ • For a quantizer with step size and sampling rate fs : – Quantization noise power distributed uniformly across Nyquist bandwidth ( fs/2) Ne(f) NB -fs /2 -fB fB f s /2 – Power spectral density: 22⎛⎞Δ ==e1 N(f)e ⎜⎟ fs ⎝⎠12 fs – Noise is aliased into the Nyquist band –fs /2 to fs /2 EECS 247 Lecture 24: Oversampling Data Converters © 2005 H. K. Page 5 Oversampled Converters Baseband Noise ff BB⎛⎞Δ2 ==1 SN(f)dfBe∫∫⎜⎟ df −− ffBB⎝⎠12 fs Ne(f) Δ2 ⎛⎞ = 2fB ⎜⎟ NB 12⎝⎠ fs = where for fBs f /2 Δ2 = SB0 -fs /2 -fB fB f s /2 12 ⎛⎞2f S SS==BB0 BB0⎜⎟ ⎝⎠fMs f where M==s oversampling ratio 2fB EECS 247 Lecture 24: Oversampling Data Converters © 2005 H. K. Page 6 Oversampled Converters Baseband Noise ⎛⎞2f S SS==BB0 BB0⎜⎟ ⎝⎠fMs f where M==s oversampling ratio 2fB 2X increase in M Æ 3dB reduction in SB Æ ½ bit increase in resolution/octave oversampling To increase the improvement in resolution: Embed quantizer in a feedback loop ÆPredictive (delta modulation) ÆNoise shaping (sigma delta modulation) EECS 247 Lecture 24: Oversampling Data Converters © 2005 H. K. Page 7 Pulse-Count Modulation Nyquist V (kT) in ADC t/T 0 1 2 Oversampled V (kT) in ADC, M = 8 t/T 0 1 2 Mean of pulse-count signal approximates analog input! EECS 247 Lecture 24: Oversampling Data Converters © 2005 H. K. Page 8 Pulse-Count Spectrum Magnitude f • Signal: low frequencies, f < B << fs • Quantization error: high frequency, B … fs / 2 • Separate with low-pass filter! EECS 247 Lecture 24: Oversampling Data Converters © 2005 H. K. Page 9 Oversampled ADC Predictive Coding + vIN ADC _ DOUT Predictor • Quantize the difference signal rather than the signal itself • Smaller input to ADC Æ Buy dynamic range • Only works if combined with oversampling • 1-Bit digital output • Digital filter computes “average” ÆN-Bit output EECS 247 Lecture 24: Oversampling Data Converters © 2005 H. K. Page 10 Oversampled ADC f = M f f = f +δ s1 N s2 N Signal E.g. Decimator “wide” Pulse-Count f = Mf “narrow” DSP transition s N Modulator transition Analog Sampler Modulator Digital AA-Filter AA-Filter B Freq 1-Bit Digital N-Bit Digital Decimator: • Digital (low-pass) filter • Removes quantization error for f > B • Provides most anti-alias filtering • Narrow transition band, high-order • 1-Bit input, N-Bit output (essentially computes “average”) EECS 247 Lecture 24: Oversampling Data Converters © 2005 H. K. Page 11 Modulator • Objectives: – Convert analog input to 1-Bit pulse density stream – Move quantization error to high frequencies f >>B – Operates at high frequency fs >> fN • M = 8 … 256 (typical)….1024 • Since modulator operated at high frequencies Æ need to keep circuitry “simple” Æ ΣΔ = ΔΣ Modulator EECS 247 Lecture 24: Oversampling Data Converters © 2005 H. K. Page 12 Sigma- Delta Modulators Analog 1-Bit ΣΔ modulators convert a continuous time analog input vIN into a 1-Bit sequence dOUT fs + vIN H(z) _ dOUT DAC Loop filter 1b Quantizer (comparator) EECS 247 Lecture 24: Oversampling Data Converters © 2005 H. K. Page 13 Sigma-Delta Modulators • The loop filter H can be either switched-capacitor or continuous time • Switched-capacitor filters are “easier” to implement + frequency characteristics scale with clock rate • Continuous time filters provide anti-aliasing protection • Loop filter can also be realized with passive LC’s at very high frequencies fs + vIN H(z) _ dOUT DAC EECS 247 Lecture 24: Oversampling Data Converters © 2005 H. K. Page 14 Oversampling A/D Conversion fs fs /M Input Signal Bandwidth Oversampling 1-bit Decimation n-bit Modulator Filter @ f /M B=fs /2M @ fs s fs = sampling rate M= oversampling ratio • Analog front-end Æ oversampled noise-shaping modulator • Converts original signal to a 1-bit digital output at the high rate of (2MXB) • Digital back-end Æ digital filter • Removes out-of-band quantization noise • Provides anti-aliasing to allow re-sampling @ lower sampling rate EECS 247 Lecture 24: Oversampling Data Converters © 2005 H. K. Page 15 1st Order ΣΔ Modulator In a 1st order modulator, simplest loop filter Æ an integrator z-1 H(z) = 1 – z-1 + vIN _ ∫ dOUT DAC EECS 247 Lecture 24: Oversampling Data Converters © 2005 H. K. Page 16 1st Order ΣΔ Modulator Switched-capacitor implementation φ φ 1 2 φ 2 - dOUT 1,0 + Vi +Δ/2 -Δ/2 EECS 247 Lecture 24: Oversampling Data Converters © 2005 H. K. Page 17 1st Order ΔΣ Modulator + vIN _ ∫ Δ ≤ ≤ Δ - /2 vIN + /2 dOUT -Δ/2 or +Δ/2 DAC • Properties of the first-order modulator: – Analog input range is equal to the DAC reference – The average value of dOUT must equal the average value of vIN – +1’s (or –1’s) density in dOUT is an inherently monotonic function of vIN Æ linearity is not dependent on component matching – Alternative multi-bit DAC (and ADCs) solutions reduce the quantization error but loose this inherent monotonicity & relaxed matching requirements EECS 247 Lecture 24: Oversampling Data Converters © 2005 H. K. Page 18 1st Order ΣΔ Modulator Tally of 1-Bit quantization error quantizer Analog input 1 2 3 Δ ≤ ≤ Δ X Q Y - /2 Vin + /2 z-1 -1 1-z 1-Bit digital Sine Wave Integrator Comparator output stream, -1, +1 Instantaneous Implicit 1-Bit DAC quantization error +Δ/2, -Δ/2 (Δ = 2) • M chosen to be 8 (low) to ease observability EECS 247 Lecture 24: Oversampling Data Converters © 2005 H. K. Page 19 1st Order Modulator Signals 1st Order Sigma-Delta X analog input 1.5 X Q Q tally of q-error Y Y digital/DAC output 1 0.5 Mean of Y approximates X 0 Amplitude -0.5 -1 T = 1/fs = 1/ (M fN) -1.5 0 10 20 30 40 50 60 Time [ t/T ] EECS 247 Lecture 24: Oversampling Data Converters © 2005 H. K. Page 20 ΣΔ Modulator Characteristics • Quantization noise and thermal noise (KT/C) distributed over –fs /2 to +fs /2 Æ Total noise within signal bandwidth reduced by 1/M • Very high SQNR achievable (> 20 Bits!) • Inherently linear for 1-Bit DAC • To first order, quantization error independent of component matching • Limited to moderate & low speed EECS 247 Lecture 24: Oversampling Data Converters © 2005 H. K. Page 21 Output Spectrum • Definitely not white! 30 • Skewed towards higher 20 Input frequencies 10 • Notice the distinct tones 0 -10 -20 Amplitude [ dBWN ] • dBWN (dB White Noise) -30 scale sets the 0dB line -40 at the noise per bin of a random -1, +1 -50 0 0.1 0.2 0.3 0.4 0.5 sequence Frequency [ f /fs] EECS 247 Lecture 24: Oversampling Data Converters © 2005 H. K. Page 22 Quantization Noise Analysis Quantization Error e(kT) Integrator −1 = z Σ H(z ) −1 Σ x(kT) 1+ z y(kT) Quantizer Model • Sigma-Delta modulators are nonlinear systems with memory Æ difficult to analyze directly • Representing the quantizer as an additive noise source linearizes the system EECS 247 Lecture 24: Oversampling Data Converters © 2005 H. K. Page 23 Signal Transfer Function −1 z x(kT) H(z ) = Σ Integrator −1 y(kT) 1+ z - H(z) ω Hj()ω = 0 jω Signal transfer function Æ low pass function: ω = 1 HjSig () + s Magnitude 1 ω 0 Yz() Hz () − f Frequency Hz()== = z1 ⇒ Delay 0 Sig Xz() 1+ Hz () EECS 247 Lecture 24: Oversampling Data Converters © 2005 H. K. Page 24 Noise Transfer Function Qualitative Analysis 2 vn v ω i 0 vo 2 Σ veq - jω 22=×⎛⎞f vveq n ⎜⎟ 2 ⎝⎠f0 2 × ⎛⎞f vn ⎜⎟ ⎝⎠f0 ω v vi Σ 0 o - jω f Frequency 2 0 22=×⎛⎞f vveq n ⎜⎟ ⎝⎠f0 ω v • Input referred-noiseÆ zero @ Σ 0 o ω DC (s-plane) vi - j EECS 247 Lecture 24: Oversampling Data Converters © 2005 H. K. Page 25 STF and NTF Quantization Error e(kT) Integrator −1 = z Σ H(z ) − Σ x(kT) 1+ z 1 y(kT) Quantizer Model Signal transfer function: Yz() Hz () − STF== =z 1 ⇒ Delay Xz() 1+ Hz () Noise transfer function: Y (z) 1 − NTF = = = 1− z 1 ⇒ Differentiator E(z) 1+ H (z) EECS 247 Lecture 24: Oversampling Data Converters © 2005 H. K. Page 26 Noise Transfer Function Yz() 1 − NTF== =−1 z 1 Ez() 1+ Hz () jTωω/2− jT /2 −−jTωω jT/2⎛⎞ee− NTF()(1 jω =− e )=2 e ⎜⎟ ⎝⎠2 − ω = 2sin/2ejTjT/2 ()ω =×−−jTωπ/2 j /2 ()ω 2sin/2ee⎣⎦⎡⎤ T = ()ω −−jT()ωπ/2 ⎣⎦⎡⎤2sinTe /2 = where Tf1/ s Thus: ωπ NTF()=2sin f() T /2=2sin() f / fs = 2 Nfy () NTF() f Ne () f EECS 247 Lecture 24: Oversampling Data Converters © 2005 H.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    31 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us