Thermodynamic Equations of State for Solids

Thermodynamic Equations of State for Solids

Thermodynamic Equations of State • Thermodynamic equations of state will lead to an understanding of concepts such as surface tension, etc. • Leads to a knowledge of how to predict the physical property or at least relations between physical properties. Fundamentals of Thermodynamics: • Variables in the lab: P, V, T • First law: dE = dw + dq • Energy is state function; any combination of heat and work possible • Microscopic scale: energy is sum of rotational, vibrational, translational and electronic energy levels. • Remember w = -PdV; negatvie sign indicates system energy increases when work done on system. • Assume. only PdV work and defining entropy as dqrev/T º dS • Leads to first law: dE = -PdV + TdS • Gibbs Free Energy: G = H -TS • Helmholtz Energy: F = E - TS 1 Relationship between E and Volume in terms of P, V, T • Take partial of First Law: dE = -PdV + TdS with respect to V at constant T: æ ¶E ö æ ¶S ö ç ÷ = -P +T ç ÷ è ¶V øT è ¶V øT • Equations should be expressed in terms of P, V, T. • Helmholz free energy: F º E -TS • Differentiate: dF º dE - TdS - SdT • Substitute from first law. dF º -PdV +TdS -TdS - SdT = -PdV - SdT æ ¶F ö æ¶F ö • Total Differential of F: dF = ç ÷ dV + ç ÷ dT è¶V ø è ¶T ø T 2 V æ ¶F ö æ ¶ F ö æ ¶P ö • Comparing leads to: = -P Ù ç ÷ = - ç ÷ ç ÷ ç ÷ è ¶V øT è ¶V¶T ø è ¶T øV 2 æ ¶F ö æ ¶ F ö æ ¶S ö • And also: = -S Ùç ÷ = - ç ÷ ç ÷ ç ÷ è ¶T øV è ¶T¶V ø è ¶V øT æ ¶2F ö æ ¶2F ö • But: ç ÷ = ç ÷ ç ¶T¶V ÷ ç ¶V¶T ÷ è ø è ø æ ¶S ö æ ¶P ö • Substituting from previous two equations:ç ÷ = ç ÷ è ¶V øT è ¶T øV æ ¶E ö æ ¶P ö • Which is leads to: ç ÷ = -P +Tç ÷ è ¶V øT è ¶T øV 2 Pressure Dependence of Enthalpy • Enthalpy is defined in terms of energy, pressure and volume: H ºE + PV. • Differentiating: dH = dE + PdV + VdP. • From the first law: dE = - PdV + TdS; • Substituting: dH = PdV+ VdP- PdV+ TdS = VdP+ TdS æ ¶H ö æ ¶S ö • Divide by dP and hold T constant: ç ÷ = V + Tç ÷ è ¶P øT è ¶P øT • Use Gibbs Free Energy: G = H - TS or dG = dH - TdS - SdT • Substitute for dH: dG=VdP+TdS-TdS-SdT=VdP-SdT • Write total differential for free energy, G(T,P): æ ¶G ö æ ¶G ö dG = ç ÷ dP+ ç ÷ dT è ¶P øT è ¶T øP æ ¶G ö æ ¶G ö • By inspection: ç ÷ = V Ù ç ÷ = -S è ¶P øT è ¶T øP 2 2 æ ¶ G ö æ¶V ö æ ¶ G ö æ ¶S ö • Second derivative:ç ÷ = Ù ç ÷ = - ç ÷ ç ÷ ç ÷ ç ÷ è ¶P¶T ø è ¶T øP è ¶T¶Pø è ¶P øT æ¶V ö æ ¶S ö • Or: ç ÷ = -ç ÷ è ¶T øP è¶P øT æ ¶H ö æ ¶V ö • Substitute for enthalpy equation: ç ÷ = V - Tç ÷ è ¶P øT è ¶T øP 3 Equations of State:Temperature Dependence • Recall 3 variables to be used are P, V, T. • Knowledge of two of the variables allows determination of the energy state of the system. • Two polynomial equations of state used here. – V = f(P) and – P = f(V) 2 • V = Vo[1 + ao(T) – a1(T)P + a2(T)P + …] where – coefficients aj are functions of temperature. – Vo = volume at absolute zero. • Differentiate with respect to T and neglect higher terms: æ ¶V ö æ ¶ao ö ç ÷ = Voç ÷ è ¶T øP è ¶T øP • When using only the first two terms of the series expansion, we have: V = Vo[1 + ao(T)]. • Substitute for Vo: Vo = V/[1+ao(T)]. 1 æ ¶V ö 1 æ ¶a ö ç ÷ = ç o ÷ V è ¶T øP [1 + ao (T)]è ¶T øP • When ao << 1, the equations reduces to: æ ¶a ö 1 æ ¶V ö ç o ÷ = ç ÷ = a è ¶T øP V è ¶T øP where a = volume expansivity, relative change in volume with temperature; related to temperature variation of ao. 4 Equations of State: Pressure Dependence • Found by taking derivative of equation of state with respect to pressure: æ ¶V ö 1 æ ¶V ö Vo ç ÷ = -Voa1 Ú - ç ÷ = a1 è ¶P øT V è ¶P øT V where higher pressure terms are ignored (only first order considered significant). • But V = Vo[1+ ao]; so that 1 æ ¶V ö a1 c = - ç ÷ = » a1 V è ¶P øT 1+ ao since a1<<a0<<1 § c = isothermal compressibility. § Pressure as a function of T, V: 2 éVo - V ù éVo - V ù P = Po(T) + P1(T)ê ú + P2 (T)ê ú + .... ë Vo û ë Vo û § Pi = material dependent coefficients; determined experimentally. § Po = pressure required to decrease the volume of the solid at higher temperature to what it would be at 0 K and no pressure. § P0<< P1 or P2 5 Relationship between Pi and ai 2 • Recall: V = Vo[1 + ao(T) – a1(T)P + a2(T)P + …] V 2 • Solve for Volume: = 1+ ao(T) - a1(T)P + a2(T)P Vo V 2 - 1 = ao(T) - a1(T)P + a2(T)P Vo Vo - V 2 = -ao(T) + a1(T)P - a2(T)P Vo • We use this in the earlier equation: 2 éVo - V ù éVo - V ù P = Po(T) + P1(T)ê ú + P2 (T)ê ú + .... ë Vo û ë Vo û P = P (T) + P (T )(- a (T) + a P - a P + ...)+ • To get o 1 o 1 2 2 P (T) - a (T ) + a P - a P +... 2 +.... 2 ( o 1 2 2 ) • Expand the second term • Neglect squared and higher terms in terms of ao and P . P = P + P - a + a P - a P2 + ... + o o 1 ( o 1 2 ) 2 P - 2a a P + a a P2 + a2P2 + ... +.... 2 ( o 1 o 2 1 ) • This can only be true when the following happens: Po - P1ao = 0, P1a1 - 2P2aoa1 =1, 2 6 - P1a2 + 2P2aoa2 + P2a1 = 0 Relationship between Pi and ai (cont.) P - P a = 0, • Solve for ai from o 1 o P1a1 - 2P2aoa1 =1, 2 - P1a2 + 2P2aoa2 + P2a1 = 0 • Gives: Po ao = , P1 1 1 æ 2P P ö a = = ç1+ o 2 ÷, 1 P - 2P a P ç 2 ÷ 1 2 o 1 è P1 ø P æ 6P P ö a = 2 ç1 + o 2 ÷ 2 3 ç 2 ÷ P1 è P1 ø • Pi can also be expressed in terms of ai, • Figure shows that compressibility increases with atomic number. • Slopes at high pressures are similar for all. • Coefficients of expansion nearly constant at absolute zero (see figure), but increase at higher temperatures . 7 Pressure Dependence of Heat Capacity • Recall the definition of heat capacity: æ ¶H ö CP = ç ÷ è ¶T øP • Take its derivative with respect to P at constant T æ ¶C ö ¶ éæ ¶H ö ù ¶ éæ ¶H ö ù ç P ÷ = ç ÷ = ç ÷ ¶P ¶P ê ¶T ú ¶T ê ¶P ú è øT ëè øP ûT ëè øT ûP æ ¶H ö æ ¶V ö • But earlier we showed: ç ÷ = V - Tç ÷ è ¶P øT è ¶T øP æ ¶C ö ¶ éæ ¶H ö ù ¶ é æ ¶V ö ù • Substitute: ç P ÷ = ç ÷ = V - Tç ÷ ¶P ¶P ê ¶T ú ¶T ê ¶T ú è øT ëè øP ûT ë è øP ûP 2 æ ¶V ö æ ¶T ö æ ¶V ö æ ¶ V ö = ç ÷ - ç ÷ ç ÷ - Tç ÷ è ¶T ø è ¶T ø è ¶T ø ç 2 ÷ P P P è ¶T øP 2 æ ¶C ö æ ¶ V ö ç P ÷ = -Tç ÷ è ¶P ø ç 2 ÷ T è ¶T øP • We can now use the equation of state to determine an equation for calculating heat capacity under various conditions. 2 • Recall: V = Vo[1 + ao(T) – a1(T)P + a2(T)P + …] • Substitute: æ 2 2 ö æ ¶CP ö ç ¶ [1 + ao(T) + a1(T )P + a2(T)P ]÷ ç ÷ = -TVo è ¶P ø ç 2 ÷ T è ¶T øP æ 2 2 2 ö æ ¶CP ö ç ¶ ao(T) ¶ a1(T ) ¶ a2(T ) 2 ÷ ç ÷ = -TVo + P + P è ¶P ø ç 2 2 2 ÷ 8 T è ¶T ¶T ¶T øP CP Vs P(cont) • Integration gives the pressure dependence of CP. æ ¶2a (T ) ¶2a (T ) ¶2a (T ) ö CP¶C = -TV Pç o + 1 P + 2 P2 ÷dP ò o P oò0 ç 2 2 2 ÷ CP è ¶T ¶T ¶T ø æ ¶2a (T ) 1 ¶2a (T ) 1 ¶2a (T ) ö C = C o -TV ç o P + 1 P2 + 2 P3÷ P P ç 2 2 2 ÷ è ¶T 2 ¶T 3 ¶T ø o • C P = heat capacity at zero pressure. • The first second derivative term is dominant at high temperature and heat capacity is expected to decrease with increasing pressure in this temperature regime (see negative sign in equation). æ ¶a ö • Recall that alpha is the volume expansitivity: a = ç o ÷ è ¶T øP • The first term is the temperature coefficient of thermal expansion. • This term nearly linear at high temperatures. 9 Cv vs P æ ¶E ö æ ¶P ö • Earlier we showed: ç ÷ = -P +T ç ÷ è ¶V øT è ¶T øV • Take derivative of both sides with respect to T: ¶2E ¶2E ¶P ¶T ¶P ¶2P = = - + + T ¶T¶V ¶V¶T ¶T ¶T ¶T ¶T 2 æ ¶E ö • But: CV = ç ÷ è ¶T øV 2 æ ¶C ö ¶ P • Substitute: V = T ç ÷ 2 è ¶V øT ¶T • Earlier we used the equation of state: 2 éVo - V ù éVo - V ù P = Po(T) + P1(T)ê ú + P2(T)ê ú +...

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    14 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us