Integral Representations of Martingales for Progressive Enlargements Of

Integral Representations of Martingales for Progressive Enlargements Of

<p>INTEGRAL REPRESENTATIONS OF MARTINGALES FOR PROGRESSIVE <br>ENLARGEMENTS OF FILTRATIONS </p><p>ANNA AKSAMIT, MONIQUE JEANBLANC AND MAREK RUTKOWSKI <br>Abstract. We work in the setting of the progressive enlargement G of a reference filtration F through the observation of a random time τ. We&nbsp;study an integral representation property for some classes of G-martingales stopped at τ. In&nbsp;the first part, we focus on the case where F is a Poisson filtration and we establish a predictable representation property with respect to three G-martingales. In&nbsp;the second part, we relax the assumption that F is a Poisson filtration and we assume that τ is an F-pseudo-stopping time.&nbsp;We establish integral representations with respect to some G-martingales built from F-martingales and, under additional hypotheses, we obtain a predictable representation property with respect to two G-martingales. </p><p>Keywords: predictable&nbsp;representation property, Poisson process, random time, progressive enlargement, pseudo-stopping time </p><p>Mathematics Subjects Classification (2010): 60H99 </p><p>1. Introduction </p><p>We are interested in the stability of the predictable representation property in a filtration enlargement setting:&nbsp;under the postulate that the predictable representation property holds for F and G is an enlargement of F, the goal is to find under which conditions the predictable representation property holds for G. We&nbsp;focus on the progressive enlargement G = (G<sub style="top: 0.14em;">t</sub>)<sub style="top: 0.14em;">t∈R </sub>of a </p><p>+</p><p>reference filtration F = (F<sub style="top: 0.14em;">t</sub>)<sub style="top: 0.14em;">t∈R </sub>through the observation of the occurrence of a random time τ </p><p>+</p><p>and we assume that the hypothesis (H<sup style="top: -0.33em;">′</sup>) is satisfied, i.e., any F-martingale is a G-semimartingale. It is worth noting that no general result on the existence of a G-semimartingale decomposition after τ of an F-martingale is available in the existing literature, while, for any τ, any F-martingale stopped at time τ is a G-semimartingale with an explicit decomposition depending on the Az´ema supermartingale of τ. Moreover, most papers in this area are devoted to either the case of honest times (see, e.g., Barlow [6] and Jeulin &amp; Yor [24, 25]) or the case where the Jacod’s absolute continuity hypothesis holds (see, e.g., Jeanblanc &amp; Le Cam [18]). The particular case where the Jacod’s equivalence hypothesis holds is presented in Callegaro et al. [9]. More information can be found in [3]. The&nbsp;stability of predictable representation property was studied first by Kusuoka [26], under the assumptions that the filtration F is generated by a Brownian motion, the intensity rate of τ exists and the filtration F is immersed in its progressive enlargement G, that is, any F-martingale is a G-martingale. The&nbsp;immersion property is also known as the hypothesis (H) (see Br´emaud &amp; Yor [8]).&nbsp;Kusuoka has shown that any G-martingale can be represented as a sum of a stochastic integral with respect to the Brownian motion and a stochastic integral with respect to the compensated G-martingale M<sup style="top: -0.33em;">(τ) </sup>of the indicator process A := 1<sub style="top: 0.18em;">[[τ,∞[[</sub>. Under the hypotheses that the filtration F enjoys the predictable representation property, F is immersed in G, and τ avoids </p><p>Date: May 21, 2018. </p><p>1</p><ul style="display: flex;"><li style="flex:1">2</li><li style="flex:1">A. AKSAMIT, M. JEANBLANC AND M. RUTKOWSKI </li></ul><p></p><p>stopping times, this result was extended for a positive Az´ema supermartingale Z in Aksamit &amp; Jeanblanc [3, Th.&nbsp;3.13] and, for the case of an arbitrary supermartingale Z, in Coculescu et al. [10]. Barlow [6] started the study of the predictable representation property in the case where τ is honest. He solved the problem for honest times avoiding F-stopping times when all F-martingales are continuous in an unpublished manuscript [7]. <br>The predictable representation property in a progressively enlarged filtration was then studied in Jeanblanc &amp; Song [21] in full generality, assuming that the predictable representation property holds in the filtration F, with respect to a (possibly multidimensional) martingale M and that the hypothesis (H<sup style="top: -0.33em;">′</sup>) between F and G holds. Theorem 3.2 in [21] gives conditions for the validity </p><p>(τ) </p><p>c</p><p></p><ul style="display: flex;"><li style="flex:1">of the predictable representation property for G-martingales with respect to the pair (M, M </li><li style="flex:1">)</li></ul><p></p><p>c</p><p>where M is the G-martingale part of the G-semimartingale M. In particular, they work under the assumption that G<sub style="top: 0.14em;">τ </sub>= G<sub style="top: 0.14em;">τ− </sub>(see (2.4) for the definition of these σ-fields). Comparing&nbsp;to their result we limit ourselves to some particular set-ups but we attempt here to derive explicit expressions for the predictable integrands, rather than merely to establish their existence and uniqueness and we do not make the assumption that G<sub style="top: 0.14em;">τ </sub>= G<sub style="top: 0.14em;">τ−</sub>. Our&nbsp;main result in this spirit, concerning a Poisson filtration, is stated in Theorem 3.1 and its further simplifications are given in Theorem 3.2 and Corollaries 3.2 and 3.3. We discuss the condition G<sub style="top: 0.14em;">τ </sub>= G<sub style="top: 0.14em;">τ− </sub>in Remark 3.2. Moreover, we derive different integral representations with not necessarily predictable integrands in the specific case where τ is assumed to be a pseudo-stopping time.&nbsp;The results of this type are collected in Propositions 4.3, 4.4 and 4.5. <br>The paper is structured as follows.&nbsp;In Section 2, we introduce the setup and notation.&nbsp;We also review very briefly the classic results regarding the G-semimartingale decomposition of F- martingales stopped at τ. <br>In Section 3, we assume that the filtration F is generated by a Poisson process N with compensated F-martingale M and we consider the filtration G, which is the progressive enlargement of F with an arbitrary random time.&nbsp;Since we work with a Poisson filtration, all F-martingales are necessarily processes of finite variation and thus any F-martingale is manifestly a G-semimartingale; in other words, the hypothesis (H<sup style="top: -0.33em;">′</sup>) is satisfied. In Section 3.1, we establish the predictable representation property for a class of G-martingales stopped at time τ in terms of three martingales: the compensated G-martingale M<sup style="top: -0.33em;">(τ) </sup>of the indicator process A, the G-martingale part M of the G-semimartingale M and the G-martingale, denoted by M<sup style="top: -0.33em;">∗</sup>, which takes care of the common </p><p>c</p><p>jumps of M<sup style="top: -0.33em;">(τ) </sup>and M. In&nbsp;Section 3.2, we illustrate the above result with a particular example </p><p>c</p><p>obtained with a Cox construction. <br>In Section 4, we consider a general filtration F and we work under the postulate that τ is an <br>F-pseudo-stopping time (see Nikeghbali &amp; Yor [31]), so that its Az´ema supermartingale is an F- optional, decreasing process. We first study in Section 4.1 the particular case of a random time τ independent of the filtration F. In Section 4.2 we consider some classes of G-martingales stopped at τ. We derive several alternative integral representations with respect to martingales built from F-martingales, under the assumption that the Az´ema supermartingale of τ is strictly positive. In Section 4.3, the positivity assumption is relaxed and we obtain a more general representation result. Under additional hypotheses on the common jumps of specific F-martingales and M<sup style="top: -0.33em;">(τ)</sup>, we </p><p>(τ) </p><p>c</p><p>obtain a predictable representation property with respect to the two martingales M and M integrals used in what follows are implicitly postulated to be well defined without further explicit <br>.</p><p></p><ul style="display: flex;"><li style="flex:1">R</li><li style="flex:1">R</li></ul><p></p><p>s</p><p></p><ul style="display: flex;"><li style="flex:1">Conventions. We use throughout the notational convention that </li><li style="flex:1">=</li><li style="flex:1"><sub style="top: 0.32em;">(t,s]</sub>. Moreover,&nbsp;all </li></ul><p></p><p>t</p><p></p><ul style="display: flex;"><li style="flex:1">INTEGRAL REPRESENTATIONS FOR PROGRESSIVE ENLARGEMENTS </li><li style="flex:1">3</li></ul><p></p><p>mentioning. In several (but not all) instances the existence of integrals is easy to check, since any process h from the class M<sup style="top: -0.33em;">o</sup>(G, τ) (or M<sup style="top: -0.33em;">p</sup>(G, τ)) is bounded (see Section 2.3).&nbsp;Finally, we write X = 0 when the process X is indistinguishable from the null process. </p><p>2. Preliminaries </p><p>We first introduce the notation for an abstract setup in which a reference filtration F is progressively enlarged through observation of a random time.&nbsp;Let (Ω, G, F, P) be a probability space where F is an arbitrary filtration satisfying the usual conditions of right-continuity and P-completeness, and such that F<sub style="top: 0.14em;">0 </sub>is a trivial σ-field and F<sub style="top: 0.14em;">∞ </sub>⊆ G. Let τ be a random time, that is, a [0, ∞]-valued random variable on (Ω, G, P). The indicator process A := 1<sub style="top: 0.18em;">[[τ,∞[[ </sub>is an increasing process, which is F-adapted if and only if τ is an F-stopping time. By convention, we shall put A<sub style="top: 0.14em;">0− </sub>:= 0 whenever we consider the jump of A at 0. <br>We denote by G the progressive enlargement of the filtration F with the random time τ, that is, the smallest right-continuous and P-completed filtration G such that the inclusion F ⊂ G holds and the process A is G-adapted so that the random time τ is a G-stopping time. In other words, the progressive enlargement is the smallest extension of the filtration F, which satisfies the usual conditions and renders τ a stopping time. </p><p>2.1. Az´ema Supermartingale. For a filtration H ∈ {F, G}, we denote by B<sup style="top: -0.33em;">p,H </sup>(resp., B<sup style="top: -0.33em;">o,H</sup>) the dual H-predictable (resp., the dual H-optional) projection of a process B of finite variation, whereas <sup style="top: -0.33em;">p,H</sup>U (resp., <sup style="top: -0.33em;">o,H</sup>U) stands for the H-predictable (resp., H-optional) projection of a process U. The H-predictable covariation process of two H-semimartingales X and Y is denoted by hX, Y i<sup style="top: -0.33em;">H</sup>. Recall that hX, Y i<sup style="top: -0.33em;">H </sup>is defined as the dual H-predictable projection of the covariation process [X, Y ], that is, hX, Y i<sup style="top: -0.33em;">H </sup>:= [X, Y ]<sup style="top: -0.33em;">p,H</sup>. The following definition is due to Az´ema [5]. </p><p>Definition 2.1. The c`adl`ag, bounded F-supermartingale Z given by </p><p></p><ul style="display: flex;"><li style="flex:1">ꢀ</li><li style="flex:1">ꢁ</li></ul><p></p><p>Z<sub style="top: 0.14em;">t </sub>:= P(τ &gt; t&nbsp;| F<sub style="top: 0.14em;">t</sub>) = <sup style="top: -0.38em;">o,F </sup>1<sub style="top: 0.18em;">[[0,τ[[ </sub>= 1 − <sup style="top: -0.38em;">o,F</sup>A<sub style="top: 0.14em;">t </sub></p><p>t</p><p>is called the Az´ema supermartingale of the random time τ. Note that Z<sub style="top: 0.14em;">∞ </sub>:= lim<sub style="top: 0.14em;">t→∞ </sub>Z<sub style="top: 0.14em;">t </sub>= P(τ = ∞ | F<sub style="top: 0.14em;">∞</sub>). By&nbsp;convention, we set Z<sub style="top: 0.14em;">0− </sub>:= 1.&nbsp;It is known that the processes Z and Z<sub style="top: 0.14em;">− </sub>do not vanish before τ. Specifically,&nbsp;the random set {Z<sub style="top: 0.14em;">− </sub>= 0} is disjoint from [[0, τ]] so that the set {Z = 0} is disjoint from [[0, τ[[ (see, e.g., [32]). <br>The Az´ema supermartingale Z is of class (D) and thus it admits a (unique) Doob-Meyer decomposition Z = µ−A<sup style="top: -0.33em;">p </sup>where µ is a positive BMO F-martingale and A<sup style="top: -0.33em;">p </sup>is an F-predictable, increasing process. Specifically,&nbsp;A<sup style="top: -0.33em;">p </sup>is the dual F-predictable projection of the increasing process A, that is, A<sup style="top: -0.33em;">p </sup>= A<sup style="top: -0.33em;">p,F</sup>, and the positive F-martingale µ is given by the equality µ<sub style="top: 0.14em;">t </sub>:= E(A<sub style="top: 0.12em;">∞</sub><sup style="top: -0.45em;">p </sup>+ 1<sub style="top: 0.18em;">{τ=∞} </sub>| F<sub style="top: 0.14em;">t</sub>). Then A<sup style="top: -0.44em;">p</sup><sub style="top: 0.26em;">0 </sub>= E(A<sub style="top: 0.14em;">0 </sub>| F<sub style="top: 0.14em;">0</sub>) = P(τ = 0&nbsp;| F<sub style="top: 0.14em;">0</sub>) = 1 − Z<sub style="top: 0.14em;">0 </sub>as in [3, Proposition 1.24] and we obtain µ<sub style="top: 0.14em;">0 </sub>= 1. It is well known [23, p. 64]) that the process M<sup style="top: -0.33em;">(τ) </sup>given by </p><p>Z</p><p>dA<sup style="top: -0.45em;">p</sup><sub style="top: 0.11em;">s </sub></p><p>t∧τ </p><p>(2.1) </p><p>M<sub style="top: 0.24em;">t</sub><sup style="top: -0.48em;">(τ) </sup>:= A<sub style="top: 0.14em;">t </sub>− </p><p>Z<sub style="top: 0.14em;">s− </sub></p><p>0</p><p>is a uniformly integrable G-martingale. We&nbsp;shall also use the dual F-optional projection A<sup style="top: -0.33em;">o </sup>:= A<sup style="top: -0.33em;">o,F </sup>of A and the positive BMO F-martingale m given by m<sub style="top: 0.14em;">t </sub>:= E(A<sup style="top: -0.33em;">o</sup><sub style="top: 0.23em;">∞ </sub>+ 1<sub style="top: 0.19em;">{τ=∞} </sub>| F<sub style="top: 0.14em;">t</sub>). Then&nbsp;A<sub style="top: 0.25em;">0</sub><sup style="top: -0.33em;">o </sup>= E(A<sub style="top: 0.14em;">0 </sub>| F<sub style="top: 0.14em;">0</sub>) and m<sub style="top: 0.14em;">0 </sub>= 1.&nbsp;It is also well known that Z = m − A<sup style="top: -0.33em;">o </sup>(see, e.g., [3, Proposition 1.46]). </p><p></p><ul style="display: flex;"><li style="flex:1">4</li><li style="flex:1">A. AKSAMIT, M. JEANBLANC AND M. RUTKOWSKI </li></ul><p></p><p>Remark 2.1. It is well known (see, e.g., Lemma 8.13 in Nikeghbali [30] or [3, Lemma 1.48]) that if either: (a) τ avoids all F-stopping times, that is, P(τ = σ &lt; ∞) = 0 for any F-stopping time σ or (b) all F-martingales are continuous so that all F-optional processes are F-predictable, then the equalities A<sup style="top: -0.33em;">o </sup>= A<sup style="top: -0.33em;">p </sup>and µ = m are valid.&nbsp;These properties motivated other authors to focus on models in which either the avoidance or the continuity properties are satisfied. </p><p>2.2. Semimartingale Decompositions for Progressive Enlargements.&nbsp;For the reader’s con- </p><p>venience, we recall some useful results for the progressive enlargement of a filtration F and an arbitrary random time τ. As was already mentioned, no general result giving tractable conditions for the stability of space of semimartingales under enlargement of filtration is known (one can see Jeulin [23, th.&nbsp;2.6]) nor furnishing a G-semimartingale decomposition after τ of an F-martingale is available in the existing literature, although some partial results were established for particular classes of random times, such as:&nbsp;the honest times (see Barlow [6] and Jeulin &amp; Yor [25]), the random times satisfying the density hypothesis (see Jeanblanc &amp; Le Cam [18]), as well as for some random times obtained through various extensions of the so-called Cox construction of a random time (see, e.g., [16, 19, 20, 28, 29, 31]) and recently for a class of thin random times (see Aksamit et al. [2]). In this work, we will use semimartingale decompositions for F-martingales stopped at τ and thus we first quote some classic results regarding this case.&nbsp;For the result stated in Proposition 2.1, the reader is referred to Jeulin [23, Proposition 4.16] and Jeulin &amp; Yor [24, Th´eor`eme 1, pp. 87–88]). </p><p>Proposition 2.1. For any F-local martingale X, the process </p><p></p><ul style="display: flex;"><li style="flex:1">Z</li><li style="flex:1">Z</li></ul><p></p><ul style="display: flex;"><li style="flex:1">ꢂ</li><li style="flex:1">ꢃ</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">t∧τ </li><li style="flex:1">t∧τ </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">1</li><li style="flex:1">1</li></ul><p></p><p>dhX, mi<sup style="top: -0.37em;">F</sup><sub style="top: 0.23em;">s </sub>= X<sub style="top: 0.14em;">t∧τ </sub></p><p>−</p><p>1<sub style="top: 0.19em;">{Z </sub></p><p>dhX, µi<sup style="top: -0.37em;">F</sup><sub style="top: 0.23em;">s </sub>+ dJ<sub style="top: 0.14em;">s </sub></p><p>b</p><p>X<sub style="top: 0.14em;">t </sub>:= X<sub style="top: 0.14em;">t∧τ </sub></p><p>(2.2) </p><p>−</p><p><sub style="top: 0.09em;">s−</sub>&lt;1} </p><p>Z<sub style="top: 0.14em;">s− </sub></p><p>Z</p><p>s− </p><p></p><ul style="display: flex;"><li style="flex:1">0</li><li style="flex:1">0</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">ꢀ</li><li style="flex:1">ꢁ</li></ul><p></p><p>where J := A∆X<sub style="top: 0.14em;">τ </sub><sup style="top: -0.51em;">p,F</sup>, is a G-local martingale (stopped at τ). </p><p>By comparing the two decompositions in (2.2), we obtain the following well known result, which will be used in the proof of the main result of this paper (see Theorem 3.1). </p><p>Corollary 2.1. The following equality holds for any F-local martingale X </p><p>Z</p><p>Proof. For completeness, we give the proof of the corollary. We note that the processes </p><p>Z</p><p></p><ul style="display: flex;"><li style="flex:1">t∧τ </li><li style="flex:1">t∧τ </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">1</li><li style="flex:1">1</li></ul><p>(2.3) </p><p></p><ul style="display: flex;"><li style="flex:1">dJ<sub style="top: 0.14em;">s </sub>= </li><li style="flex:1">dhX, m − µi<sup style="top: -0.37em;">F</sup><sub style="top: 0.23em;">s </sub>. </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">Z<sub style="top: 0.14em;">s− </sub></li><li style="flex:1">Z<sub style="top: 0.14em;">s− </sub></li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">0</li><li style="flex:1">0</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">Z</li><li style="flex:1">Z</li></ul><p></p><ul style="display: flex;"><li style="flex:1">ꢂ</li><li style="flex:1">ꢃ</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">·∧τ </li><li style="flex:1">·∧τ </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">1</li><li style="flex:1">1</li></ul><p></p><p>dhX, mi<sup style="top: -0.37em;">F</sup><sub style="top: 0.23em;">s </sub></p><p>and </p><p>1<sub style="top: 0.19em;">{Z </sub></p><p>dhX, µi<sup style="top: -0.37em;">F</sup><sub style="top: 0.23em;">s </sub>+ dJ<sub style="top: 0.14em;">s </sub></p><p><sub style="top: 0.09em;">s−</sub>&lt;1} </p><p>Z<sub style="top: 0.14em;">s− </sub></p><p>Z</p><p>s− </p><p></p><ul style="display: flex;"><li style="flex:1">0</li><li style="flex:1">0</li></ul><p></p><p>are G-predictable. Hence equations (2.2) yield two equivalent forms of the Doob-Meyer decomposition of the special G-semimartingale X<sub style="top: 0.14em;">·∧τ </sub>. Due to the uniqueness of the Doob-Meyer decomposition, we obtain </p><p>ZZZ<br>Z</p><ul style="display: flex;"><li style="flex:1">ꢂ</li><li style="flex:1">ꢃ</li></ul><p></p><p>t∧τ t∧τ t∧τ t∧τ </p><p></p><ul style="display: flex;"><li style="flex:1">1</li><li style="flex:1">1</li></ul><p>0 = </p><p>=</p><p>1<sub style="top: 0.19em;">{Z </sub></p><p>dhX, µi<sup style="top: -0.37em;">F</sup><sub style="top: 0.23em;">s </sub>+ dJ<sub style="top: 0.14em;">s </sub></p><p>−</p><p>dhX, mi<sup style="top: -0.37em;">F</sup><sub style="top: 0.23em;">s </sub></p><p><sub style="top: 0.09em;">s−</sub>&lt;1} </p><p>Z</p><p>Z<sub style="top: 0.14em;">s− </sub></p><p>s− </p><p>000<br>0</p><p>Z</p><ul style="display: flex;"><li style="flex:1">ꢂ</li><li style="flex:1">ꢃ</li><li style="flex:1">ꢂ</li><li style="flex:1">ꢃ</li></ul><p></p><p>t∧τ </p><p>1</p><p>dhX, µ − mi<sup style="top: -0.37em;">F</sup><sub style="top: 0.23em;">s </sub>+ dJ<sub style="top: 0.14em;">s </sub></p><p>−</p><p>1<sub style="top: 0.19em;">{Z </sub></p><p>dhX, µi<sup style="top: -0.37em;">F</sup><sub style="top: 0.23em;">s </sub>+ dJ<sub style="top: 0.14em;">s </sub></p><p><sub style="top: 0.09em;">s−</sub>=1} </p><p>Z<sub style="top: 0.14em;">s− </sub></p><p>0</p><p></p><ul style="display: flex;"><li style="flex:1">ꢂ</li><li style="flex:1">ꢃ</li></ul><p></p><p>1<br>=</p><p>dhX, µ − mi<sup style="top: -0.37em;">F</sup><sub style="top: 0.23em;">s </sub>+ dJ<sub style="top: 0.14em;">s </sub></p><p>Z<sub style="top: 0.14em;">s− </sub></p><p>where the last equality follows from Lemme 4(b) in [24]. Hence equality (2.3) is valid. </p><p>✷</p><p></p><ul style="display: flex;"><li style="flex:1">INTEGRAL REPRESENTATIONS FOR PROGRESSIVE ENLARGEMENTS </li><li style="flex:1">5</li></ul><p></p><p>2.3. Problem Formulation.&nbsp;For a filtration H ∈ {F, G} and a random time τ, we introduce two σ-fields H<sub style="top: 0.14em;">τ </sub>and H<sub style="top: 0.14em;">τ− </sub>defined as </p><p>(<br>ꢄ</p><p>H<sub style="top: 0.14em;">τ </sub>= σ Y<sub style="top: 0.14em;">τ </sub>1<sub style="top: 0.18em;">{τ&lt;∞}</sub>, Y&nbsp;is an&nbsp;H-optional process </p><p>ꢄ</p><p>(2.4) </p><p>H<sub style="top: 0.14em;">τ− </sub>= σ Y<sub style="top: 0.14em;">τ </sub>1<sub style="top: 0.19em;">{τ&lt;∞}</sub>, Y&nbsp;is an&nbsp;H-predictable process . </p><p>Obviously, H<sub style="top: 0.14em;">τ− </sub>⊂ H<sub style="top: 0.14em;">τ </sub>and τ ∈ H<sub style="top: 0.14em;">τ−</sub>. We recall that, in a progressive enlargement setting, for any G-predictable process Y , there exists an F-predictable process y such that Y<sub style="top: 0.14em;">t</sub>1<sub style="top: 0.18em;">{t≤τ} </sub>= y<sub style="top: 0.14em;">t</sub>1<sub style="top: 0.18em;">{t≤τ} </sub>(see, e.g., [3, Proposition 2.11]) and thus we have that G<sub style="top: 0.14em;">τ− </sub>= F<sub style="top: 0.14em;">τ−</sub>. In&nbsp;contrast, the σ-fields G<sub style="top: 0.14em;">τ </sub>and F<sub style="top: 0.14em;">τ </sub>may differ, in general (for counterexamples, see Barlow [6, Page 319] or [3, Example 5.13]). Note that since the random time τ is a G-stopping time, the definitions of G<sub style="top: 0.14em;">τ </sub>and G<sub style="top: 0.14em;">τ− </sub>given above coincide with the usual ones, specifically, </p><p>G<sub style="top: 0.14em;">τ </sub>= {G ∈ G<sub style="top: 0.14em;">∞ </sub>: G ∩ {τ ≤ t} ∈ G<sub style="top: 0.14em;">t</sub>, ∀t} </p><p>whereas G<sub style="top: 0.14em;">τ− </sub>is the smallest σ-field which contains G<sub style="top: 0.14em;">0 </sub>and all the sets of the form G ∩ {t &lt; τ} where t &gt; 0 and G ∈ G<sub style="top: 0.14em;">t</sub>. <br>Let us introduce the following notation for the classes of G-martingales studied in this work </p><p>ꢄ</p><p>M<sup style="top: -0.38em;">o</sup>(G, τ) :=&nbsp;Y<sub style="top: 0.22em;">t</sub><sup style="top: -0.38em;">h </sup>:= E(h<sub style="top: 0.14em;">τ </sub>| G<sub style="top: 0.14em;">t</sub>): h ∈ H<sup style="top: -0.38em;">o</sup>(F) where H<sup style="top: -0.33em;">o</sup>(F) := {h : h a bounded F-optional process with limit at&nbsp;+ ∞}. We denote by H<sup style="top: -0.33em;">p</sup>(F) the set of all processes h in H<sup style="top: -0.33em;">o</sup>(F) that are F-predictable and we set </p><p>ꢄ</p><p>M<sup style="top: -0.37em;">p</sup>(G, τ) :=&nbsp;Y<sub style="top: 0.23em;">t</sub><sup style="top: -0.37em;">h </sup>:= E(h<sub style="top: 0.14em;">τ </sub>| G<sub style="top: 0.14em;">t</sub>): h ∈ H<sup style="top: -0.37em;">p</sup>(F) . <br>Remark 2.2. (a) Due to the equality G<sub style="top: 0.14em;">τ− </sub>= F<sub style="top: 0.14em;">τ−</sub>, the set M<sup style="top: -0.33em;">p</sup>(G, τ) represents all bounded G- </p><ul style="display: flex;"><li style="flex:1">martingales Y for which Y<sub style="top: 0.14em;">τ </sub>is equal to the value at time τ of a G-predictable process, i.e., Y<sub style="top: 0.14em;">τ </sub>∈ G<sub style="top: 0.14em;">τ− </sub></li><li style="flex:1">.</li></ul><p>(b) Since the equality G<sub style="top: 0.14em;">τ </sub>= F<sub style="top: 0.14em;">τ </sub>is not valid, in general, M<sup style="top: -0.33em;">o</sup>(G, τ) may differ from the class of all bounded G-martingales stopped at τ. Note&nbsp;that M<sup style="top: -0.33em;">o</sup>(G, τ) is equal to the class of all bounded G-martingales stopped at τ if τ is an F-stopping time.&nbsp;If G<sub style="top: 0.14em;">τ </sub>= G<sub style="top: 0.14em;">τ− </sub>= F<sub style="top: 0.14em;">τ </sub>, then we have equality between the two classes M<sup style="top: -0.33em;">p</sup>(G, τ) and M<sup style="top: -0.33em;">o</sup>(G, τ). In&nbsp;general, one has only G<sub style="top: 0.14em;">τ− </sub>⊂ G<sub style="top: 0.14em;">τ </sub>where the inclusion may be strict.&nbsp;For instance, if τ is the first jump of a compound Poisson process </p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    27 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us