CSIRO PUBLISHING Australian Journal of Botany http://dx.doi.org/10.1071/BT12225 New handbook for standardised measurement of plant functional traits worldwide N. Pérez-Harguindeguy A,Y, S. Díaz A, E. Garnier B, S. Lavorel C, H. Poorter D, P. Jaureguiberry A, M. S. Bret-Harte E, W. K. CornwellF, J. M. CraineG, D. E. Gurvich A, C. Urcelay A, E. J. VeneklaasH, P. B. ReichI, L. PoorterJ, I. J. WrightK, P. RayL, L. Enrico A, J. G. PausasM, A. C. de VosF, N. BuchmannN, G. Funes A, F. Quétier A,C, J. G. HodgsonO, K. ThompsonP, H. D. MorganQ, H. ter SteegeR, M. G. A. van der HeijdenS, L. SackT, B. BlonderU, P. PoschlodV, M. V. Vaieretti A, G. Conti A, A. C. StaverW, S. AquinoX and J. H. C. CornelissenF AInstituto Multidisciplinario de Biología Vegetal (CONICET-UNC) and FCEFyN, Universidad Nacional de Córdoba, CC 495, 5000 Córdoba, Argentina. BCNRS, Centre d’Ecologie Fonctionnelle et Evolutive (UMR 5175), 1919, Route de Mende, 34293 Montpellier Cedex 5, France. CLaboratoire d’Ecologie Alpine, UMR 5553 du CNRS, Université Joseph Fourier, BP 53, 38041 Grenoble Cedex 9, France. DPlant Sciences (IBG2), Forschungszentrum Jülich, D-52425 Jülich, Germany. EInstitute of Arctic Biology, 311 Irving I, University of Alaska Fairbanks, Fairbanks, AK 99775-7000, USA. FSystems Ecology, Faculty of Earth and Life Sciences, Department of Ecological Science, VU University, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands. GDivision of Biology, Kansas State University, Manhtattan, KS 66506, USA. HFaculty of Natural and Agricultural Sciences, School of Plant Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia. IDepartment of Forest Resources, University of Minnesota, 1530 N Cleveland Avenue, St Paul, MN 55108, USA and Hawkesbury Institute for the Environment, University of Western Sydney, Locked Bag 1797, Penrith, NSW 2751, Australia. JCentre for Ecosystems, Forest Ecology and Forest Management Group, Wageningen University, PO Box 47, 6700 AA Wageningen, The Netherlands. KDepartment of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia. LDepartment of Biological Sciences, Stanford University, Stanford, CA, USA. MCentro de Investigaciones sobre Desertificación (CIDE-CSIC), IVIA Campus, Carretera Nàquera km 4.5, 46113 Montcada, Valencia, Spain. NInstitute of Agricultural Sciences, ETH Zurich, Universitätstrasse 2, LFW C56, CH-8092 Zürich, Switzerland. OPeak Science and Environment, Station House, Leadmill, Hathersage, Hope Valley S32 1BA, UK. PDepartment of Animal and Plant Sciences, The University of Sheffield, Sheffield S10 2TN, UK. QNSW Department of Primary Industries, Forest Resources Research Beecroft, NSW 2119, Australia. RNaturalis Biodiversity Center, Leiden, and Institute of Environmental Biology, Ecology and Biodiversity Group, Utrecht University, Utrecht, The Netherlands. SEcological Farming Systems, Agroscope Reckenholz Tänikon, Research Station ART, Reckenholzstrasse 191, 8046 Zurich, Switzerland and Plant-Microbe Interactions, Institute of Environmental Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands. TDepartment of Ecology and Evolutionary Biology, University of California, Los Angeles, 621 Charles E. Young Drive South, Los Angeles, CA 90095-1606, USA. UDepartment of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA. VInstitute of Botany, Faculty of Biology and Preclinical Medicine, University of Regensburg, D-93040, Regensburg, Germany. WDepartment of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA. XCentro Agronómico Tropical de Investigación y Enseñanza, CATIE 7170, Cartago, Turrialba 30501, Costa Rica. YCorresponding author. Email: [email protected] Journal compilation Ó CSIRO 2013 www.publish.csiro.au/journals/ajb B Australian Journal of Botany N. Pérez-Harguindeguy et al. Abstract. Plant functional traits are the features (morphological, physiological, phenological) that represent ecological strategies and determine how plants respond to environmental factors, affect other trophic levels and influence ecosystem properties. Variation in plant functional traits, and trait syndromes, has proven useful for tackling many important ecological questions at a range of scales, giving rise to a demand for standardised ways to measure ecologically meaningful plant traits. This line of research has been among the most fruitful avenues for understanding ecological and evolutionary patterns and processes. It also has the potential both to build a predictive set of local, regional and global relationships between plants and environment and to quantify a wide range of natural and human-driven processes, including changes in biodiversity, the impacts of species invasions, alterations in biogeochemical processes and vegetation–atmosphere interactions. The importance of these topics dictates the urgent need for more and better data, and increases the value of standardised protocols for quantifying trait variation of different species, in particular for traits with power to predict plant- and ecosystem- level processes, and for traits that can be measured relatively easily. Updated and expanded from the widely used previous version, this handbook retains the focus on clearly presented, widely applicable, step-by-step recipes, with a minimum of text on theory, and not only includes updated methods for the traits previously covered, but also introduces many new protocols for further traits. This new handbook has a better balance between whole-plant traits, leaf traits, root and stem traits and regenerative traits, and puts particular emphasis on traits important for predicting species’ effects on key ecosystem properties. We hope this new handbook becomes a standard companion in local and global efforts to learn about the responses and impacts of different plant species with respect to environmental changes in the present, past and future. Additional keywords: biodiversity, ecophysiology, ecosystem dynamics, ecosystem functions, environmental change, plant morphology. Received 23 November 2011, accepted 29 January 2013, published online 26 April 2013 Contents 3.9 Vein density ........................................................ AE 3.10 Light-saturated photosynthetic rate ...................AF Introduction and discussion ............................................C 3.11 Leaf dark respiration .........................................AF 1 Selection of species and individuals .........................D 3.12 Photosynthetic pathway ....................................AG 1.1 Selection of species................................................D 3.13 C-isotope composition as a measure of intrinsic 1.2 Selection of individuals within a species............... E water-use efficiency ..........................................AH 1.3 Replicate measurements......................................... F 3.14 Electrolyte leakage as an indicator of frost 2 Whole-plant traits...................................................... F sensitivity ........................................................... AI 2.1 Life history and maximum plant lifespan.............. F 3.15 Leaf water potential as a measure of water 2.2 Life form................................................................G status .................................................................. AJ 2.3 Growth form ..........................................................G 3.16 Leaf palatability as indicated by preference by 2.4 Plant height ............................................................. I model herbivores...............................................AK 2.5 Clonality, bud banks and below-ground storage 3.17 Litter decomposability ..................................... AM organs...................................................................... J 4 Stem traits ..............................................................AO 2.6 Spinescence............................................................K 4.1 Stem-specific density ..........................................AO 2.7 Branching architecture ........................................... L 4.2 Twig dry-matter content and twig drying time...AQ 2.8 Leaf area : sapwood area ratio ................................ L 4.3 Bark thickness (and bark quality) .......................AQ 2.9 Root-mass fraction................................................ M 4.4 Xylem conductivity............................................. AR 2.10 Salt resistance...................................................... M 4.5 Vulnerability to embolism ...................................AS 2.11 Relative growth rate and its components.............O 5 Below-ground traits ............................................... AT 2.12 Plant flammability................................................ P 5.1 Specific root length ............................................. AT 2.13 Water-flux traits ...................................................R 5.2 Root-system morphology....................................AV 3 Leaf traits .................................................................. T 5.3 Nutrient-uptake strategy......................................AV 3.1 Specific leaf area.................................................... T 6 Regenerative traits ................................................AW 3.2 Area of a leaf ........................................................W 6.1 Dispersal syndrome............................................AW 3.3 Leaf dry-matter content..........................................X 6.2 Dispersule
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages68 Page
-
File Size-