1300 North 17th Street, Suite 900 Arlington, VA 22209, USA +1-703-841-3259 http://dicom.nema.org E-mail: [email protected] STRATEGIC DOCUMENT Last revised: 2017-03-08 The purpose of this document is to provide a summary of the current activities and future directions of the DICOM Standard. The content of the document is largely based on information submitted by individual working group chairs. The date of the last change of the strategy is marked for each working group; changes to the listing of Secretaries and/or Co-Chairs are made as needed. Contents INTRODUCTION The DICOM Standards Committee WG-01: Cardiac and Vascular Information WG-16: Magnetic Resonance WG-02: Projection Radiography and Angiography WG-17: 3D Manufacturing WG-03: Nuclear Medicine WG-18: Clinical Trials and Education WG-04: Compression WG-19: Dermatologic Standards WG-05: Exchange Media WG-20: Integration of Imaging and Information Systems WG-06: Base Standard WG-21: Computed Tomography WG-07: Radiotherapy WG-22: Dentistry WG-08: Structured Reporting WG-23: Application Hosting WG-09: Ophthalmology WG-24: Surgery WG-10: Strategic Advisory WG-25: Veterinary Medicine WG-11: Display Function Standard WG-26: Pathology WG-12: Ultrasound WG-27: Web Technology for DICOM WG-13: Visible Light WG-28: Physics WG-14: Security WG-29: Education, Communication and Outreach WG-15: Digital Mammography and CAD WG-30: Small Animal Imaging WG-31: Conformance INTRODUCTION Last substantive update: 2010-06-16 A Brief Background of the DICOM Standard The introduction of digital medical image sources in the 1970’s and the use of computers in processing these images after their acquisition led the American College of Radiology (ACR) and the National Electrical Manufacturers Association (NEMA) to form a joint committee in order to create a standard method for the transmission of medical images and their associated information. This committee, formed in 1983, published in 1985 the ACR-NEMA Standards Publication No. 300-1985. Prior to this, most devices stored images in a proprietary format and transferred files of these proprietary formats over a network or on removable media in order to perform image communication. While the initial versions of the ACR-NEMA effort (version 2.0 was published in 1988) created standardized terminology, an information structure, and unsanctioned file encoding, most of the promise of a standard method of communicating digital image information was not realized until the release of version 3.0 of the Standard in 1993. The release of version 3.0 saw a name change, to Digital Imaging and Communications in Medicine (DICOM), and numerous enhancements that delivered on the promise of standardized communications. The DICOM Standard now specified a network protocol utilizing TCP/IP, defined the operation of Service Classes beyond the simple transfer of data, and created a mechanism for uniquely identifying Information Objects as they are acted upon across the network. DICOM was also structured as a multi-part document in order to facilitate extension of the Standard. Additionally, DICOM defined Information Objects not only for images but also for patients, studies, reports, and other data groupings. With the enhancements made in DICOM (Version 3.0), the Standard was now ready to deliver on its promise not only of permitting the transfer of medical images in a multi- vendor environment, but also facilitating the development and expansion of picture archiving and communication systems (PACS) and interfacing with medical information systems. Scope of DICOM The DICOM Standards Committee exists to create and maintain international standards for communication of biomedical diagnostic and therapeutic information in disciplines that use digital images and associated data. The goals of DICOM are to achieve compatibility and to improve workflow efficiency between imaging systems and other information systems in healthcare environments worldwide. DICOM is a cooperative standard. Connectivity works because vendors cooperate in testing via either scheduled public demonstrations, over the Internet, or during private test sessions. Every major diagnostic medical imaging vendor in the world has incorporated the Standard into its product design, and most are actively participating in the enhancement of the Standard. Most of the professional societies throughout the world have supported and are participating in the enhancement of the Standard as well. DICOM is used or will soon be used by virtually every medical profession that utilizes images within the healthcare industry. These include cardiology, dentistry, endoscopy, mammography, ophthalmology, orthopedics, pathology, pediatrics, radiation therapy, radiology, surgery, etc. DICOM is even used in veterinary medical imaging applications. DICOM also addresses the integration of information produced by these various specialty applications in the patient’s Electronic Health Record (EHR). It defines the network and media interchange services allowing storage and access to these DICOM objects for EHR systems. Technology Overview The DICOM Standard addresses multiple levels of the ISO OSI network model and provides support for the exchange of information on interchange media. DICOM currently defines an upper layer protocol (ULP) that is used over TCP/IP (independent of the physical network), messages, services, information objects and an association negotiation mechanism. These definitions ensure that any two implementations of a compatible set of services and information objects can effectively communicate. Independence from the underlying network technology allows DICOM to be deployed in many functional areas of application, including but not limited to communication within a single site (often using various forms of Ethernet), between sites over leased lines or virtual private networks (VPNs), within a metropolitan area (often using Asynchronous Transfer Mode), across dial-up or other remote access connections (such as by modem, ISDN or DSL), and via satellite (with optimized protocol stacks to account for increased latency). At the application layer, the services and information objects address five primary areas of functionality: Transmission and persistence of complete objects (such as images, waveforms and documents), Query and retrieval of such objects, Performance of specific actions (such as printing images on film), Workflow management (support of work lists and status information) and Quality and consistency of image appearance (both for display and print). DICOM does not define architecture for an entire system; nor does it specify functional requirements, beyond the behavior defined for specific services. For example, storage of image objects is defined in terms of what information must be transmitted and retained, not how images are displayed or annotated. An additional DICOM service is available to specify how the image must be presented with annotations to the user. DICOM can be considered as a standard for communication across the “boundaries” between heterogeneous or disparate applications, devices and systems. The services and objects that are defined in DICOM are designed to address specific, real-world applications (such as the performance of an imaging study on an acquisition device). As such, DICOM is not a general-purpose tool for distributed object management. In general, information is transferred “in bulk” according to a “document” paradigm. DICOM STRATEGIC DOCUMENT PAGE 2 By contrast, general-purpose standards for distributed object or database management generally provide lower level, more atomic access to individual attributes. Though the DICOM Standard does provide the so-called “normalized” services for patient and study management, these have not proven popular, and the “composite”, document-oriented, services have prevailed. This is most likely a consequence of the natural division of functionality between different vendors, devices and applications. For example, the ability to “set” or “change” a patient’s name is generally implemented in a proprietary and centralized manner. To safely distribute responsibility for such a change across boundaries between different applications requires more underlying support than DICOM currently possesses (such as support for transactions and two-phase commitment). At the present time, the pressing needs in DICOM (as indicated by the priorities of the various working groups) are to address issues relating to new modality technology, structured and coded documents for specific clinical domains, workflow management, security and performance. These needs are being successfully addressed using the conventional “underlying” DICOM technology. Where there are interfaces to standards based on other technologies (such as HL7 V2.x and 3), the focus for harmonization is on a shared “information model.” It may be the case that the nature of the underlying technology needs to be revisited in the future, whether it is to make use of more sophisticated off-the-shelf distributed messaging tools such as Web Services, or ubiquitously used encoding tools such as XML. However, the current priority is to address improvements in functionality to better meet the needs of the end-user, rather than to adopt an alternative encoding and distribution technology for the sake of it. This priority is continually reinforced by a desire to remain compatible with the installed base of equipment. When specific new technology is required, e.g., in support of new features such as
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages50 Page
-
File Size-