Stellarators and Linear Devices

Stellarators and Linear Devices

Stellarators and linear devices Gábor Veres/Gergő Pokol BME NTI Fusion devices 24. February 2020 Ingredients of fusion Confinement and Stability 2 Confinement (force-free equilibrium) + Stability („rigidity” against perturbations) 3 Linear devices I 4 The magnetic mirror In slowly varying magnetic fields the constant magnetic moment is constant. 푣0 If the initial parallel velocity of the 푣⊥ particle is too large, the particle escapes 푣∥ 5 Linear devices II 6 Linear devices III (Magneto-Optical Traps, MOT) anti-Helmholtz coils and Ioffe-Pritchard trap twisted metal bars to achieve 3D trapping The magnetic field B, versus position 7 The Bennett-pinch (Z-pinch) 1D (linear) equilibrium The simplest equilibrium is the Bennett-pinch (Z-pinch) Why it does not work?: Suffers from numerous, violent instabilities 8 The theta-pinch 1D (linear) equilibrium This equilibrium is stable, but transient. 9 The screw-pinch 1D (linear) equilibrium This equilibrium is stable, but end-losses are substantial 10 Linear devices summary Problems: Loss cones at the ends Instabilities Proposed solutions: - Tandem mirror (electrostatic boundary) - Plasma rotation - Multiple mirrors (diffusive losses) around the axis - ICRH at ends (empty loss cones) - Inverse curved - strong NBI heating (non-thermal population) regions - long device (~100 m) 11 2D (toroidal) equilibrium Partcle drifts in electrical and inhomogeneous magnetic fields: This leads to an outward drift electron gradB-drift Rotational transform (= helical magnetic field) is necessary E ExB-drift ion gradB-drift 12 Rotational transform (iota) 휗 휄 = lim 푛 푛→∞ 2휋푛 2휋 푞 = 휄 The safety factor for tokamaks 13 ZETA Reactor (UK) „Zero Energy Thermonuclear Assembly” – from 1957 14 Plasma balls: 3D equilibrium No „self-confinement” in 3D!!!! 15 Some history (fake news I) Ronald Richter and the Huemul Project (1951), Thermotron → a complete fiasco 16 Some history (fake news II) 17 The helical field is necessary, but not sufficient Vertical field + strong toroidal field to supress instabilities 18 Stellarator zoology 19 Stellarator history Lyman Spitzer with his Model-A stellarator in 1958 20 Stellarator history - Princeton Model-B stellarator T 1 2n D ~ B2 1 kT D B 16 eB Model C stellarator 21 Wendelstein stellarators Wendelstein I-A (1961): „Racetrack” geometry Major radius: 35 cm Minor radius: 2 cm Magnetic field: 1 T Ohmic heating l=3 winding Wendelstein I-B l=2 winding22 Classical stellarator 23 Wendelstein stellarators Wendelstein II-A (1968): Torus geometry Major radius: 50 cm Minor radius: 5 cm Magnetic field: 0,6 T RF heating 24 Classical stellarator – WII-A 25 Wendelstein stellarators Wendelstein II-B (1971): Torus geometry Major radius: 50 cm Minor radius: 5 cm Magnetic field: 1,25 T RF heating OH transformer 26 Confinement depends on iota Let’s design the iota-profile! = 1/q Ratios of small rational numbers are infavourable, because field line close on themselvs after a few turns 27 Modular stellarator 28 (Advanced) Wendelstein stellarators Wendelstein 7-A (1976): Torus geometry Major radius: 2 m Minor radius: 0,1 m Magnetic field: 3,4 T Hydrogen plasma Neutral beam heating 29 Wendelstein stellarators Wendelstein 7-AS (1988): Modular stellarator (5 modules) Partially optimized Major radius: 2 m Minor radius: 0,18 m Magnetic field: 2,5 T Hydrogen and deuterium plasma 30 W7-AS 31 Wendelstein stellarators WEGA (1970 2001 2013): Torus geometry Major radius: 0,72 m Minor radius: 0,11 m Magnetic field: 0,9 T Hydrogen plasma Educational purpose From 2014: Hybrid Illinois Device for Research and Applications 32 Magnetic geometry 33 Island divertor 34 W-7x stellarator (full 3D) 35 Wendelstein stellarators 1970 1980 1990 2000 2010 W7-X Greifswald Wega Garching München Wendelstein 7-AS W 7-A W 2-B W 2-A W1-B Wendelstein line stellarators W 1-A 36 Modular stellarator – HSX 37 Heliotron 38 Heliotron – LHD 39 Heliotron – LHD 40 Torsatron 41 Torsatron – TJ-K 42 Heliac 43 Heliac – TJ-II 44 Heliac – TJ-II 45 Stellarator magnetic fields 46 Sources 1. J.L. Johnson: The evolution of stellarator theory st Princeton, PPPl-3629 (2001) 2. H. Wobig et al.: Stellarator research at the IPP Garching, IPP report (2002) 3. M. Hirsch et al.: Major results form the stellarator Wendelstein 7-AS, Plasma Physics and Controlled Fusion, 50, 053001 (2008) 4. B.A. Carreras et al.: Progress in strellarator/heliotron research:1981-1986, Nuclear Fusion, 28, 1613 (1988) 5. http://npre.illinois.edu/news/hidra%E2%80%99s-many-uses 6. http://www.hsx.wisc.edu/ 7. http://www.lhd.nifs.ac.jp/en/lhd/ 8. http://www.igvp.uni-stuttgart.de/forschung/projekte-pd/tjk.en.html 9. http://fusionsites.ciemat.es/tj-ii-2/ 10.Stellarator News: http://web.ornl.gov/sci/fed/stelnews/ 47.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    47 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us