UNIVERSITY OF CINCINNATI Date:___________________ I, _________________________________________________________, hereby submit this work as part of the requirements for the degree of: in: It is entitled: This work and its defense approved by: Chair: _______________________________ _______________________________ _______________________________ _______________________________ _______________________________ Heat Transfer Studies of a Pyrotechnic Event and its Effect on Fuel Pool Ignition A thesis submitted to the Division of Research and Advanced Studies of the University of Cincinnati in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in the Department of Mechanical, Industrial and Nuclear Engineering of the College of Engineering 2005 by Ravi Prasad B.E., Marine Engineering and Research Institute, Kolkata, India Committee Chair: Dr. Peter J. Disimile ABSTRACT The local temperature field associated with a pyrotechnic event has numerous implications, particularly in the area of aircraft survivability. This study determined the temperature distribution within the vicinity of the fireball of a pyrotechnic event. A low cost simulation methodology has been developed to provide further understanding of this type of event from data involving both the geometric and thermal state of a generated incendiary cloud. The study discusses the temperature measurement methodology, the temperature distribution within and outside a fireball volume. The study also provides empirical evidence that the measured temperature, over the short duration of the pyrotechnic event, cannot accurately be determined from the size and radiant emission of the light emitted. The second phase of the study examines the ignition of a fuel pool by the pyrotechnic event. Ignition height for various fuel pool temperatures has been determined. These studies showed that the size and radiation emitted by the incendiary cloud, above the fuel pool, does not correlate with the height at which the fuel pool ignites. ACKNOWLEDGEMENTS I would like to thank the funding support from the Department of Defense, The Joint Aircraft Survivability (JAS) program office. I would like to thank Dr. Peter J. Disimile, Associate Professor at the Dept. of ASE & EM and my thesis advisor, for his excellent guidance, support and patience during the course of this dissertation. I would like to thank Dr. Norman Toy, Professor at the University of Surrey UK, for his valuable insights and suggestions during critical junctures of the research. I would also like to thank Dr. Michael Kazmierczak, Associate Professor at the Dept. of MINE, and Dr. Milind Jog, Associate Professor at the Dept. of MINE, for agreeing to be on the defense committee and reviewing my thesis and contributing to its improvement. I would also like to thank Mr. Curtis Fox, Research Associate at the Dept. of ASE & EM, for having helped in the various stages of the research. I appreciate the guidance of Mr. Doug Hurd, Junior Research Associate at the Dept. of MINE, at the Mechanical Engineering workshop. I would like to thank Mr. Bo Westheider, Instrumentation Specialist at the Dept. of MINE, for providing the electric supply equipment. Special thanks to Mr. Jeremy Dusina, Graduate Student at the Dept. of ASE & EM, for having provided an unending supply of thermocouples. I would like to thank all my friends for their moral support and having made my stay at the University of Cincinnati enjoyable. I would like to appreciate the support shown to me by the members of UC- FEST lab. Thank you. TABLE OF CONTENTS 1 INTRODUCTION ..................................................................................................................9 1.1 Problem Description ....................................................................................................... 9 1.2 Objective....................................................................................................................... 11 1.3 History and Background............................................................................................... 12 2 EXPERIMENTAL METHODS............................................................................................14 2.1 Development stage of the Experimental Rig ................................................................ 14 2.2 Manufacture of the Experimental Rig........................................................................... 19 2.3 Development stage of the Test Piece............................................................................ 24 2.4 Manufacture of the Test Charge ................................................................................... 28 2.4.1 Mold for cylindrical test charge............................................................................ 28 2.4.2 Support Rod with Heating Element ...................................................................... 28 2.4.3 Composition of test charge ................................................................................... 29 2.4.4 CPM ...................................................................................................................... 30 2.4.5 Labmix .................................................................................................................. 31 2.4.6 Electric match composition................................................................................... 32 2.4.7 Mixing Method..................................................................................................... 33 2.4.8 Casting Process..................................................................................................... 34 2.5 Experimental Procedure................................................................................................ 34 2.5.1 Fixing the test charge............................................................................................ 34 2.5.2 Alignment of thermocouple .................................................................................. 35 2.5.3 Setting up the data acquisition system.................................................................. 36 1 3 TEMPERATURE MEASUREMENTS................................................................................ 38 3.1 Theory of Thermocouples............................................................................................. 38 3.1.1 Seebeck effect....................................................................................................... 38 3.1.2 Thermocouple definition....................................................................................... 38 3.2 Thermocouples.............................................................................................................. 38 3.2.1 Types of thermocouples........................................................................................ 38 3.2.2 Thermocouple selection criteria............................................................................ 38 3.2.3 Thermocouple selected......................................................................................... 40 3.3 Calibration and Data acquisition................................................................................... 43 3.3.1 Effect of Additional Junctions .............................................................................. 43 3.3.2 Software compensation......................................................................................... 44 3.3.3 Data acquisition system ........................................................................................ 45 3.3.4 LabVIEW software ............................................................................................... 45 4 TEMPERATURE FIELD ANALYSIS ................................................................................ 48 4.1 Pyrotechnic theory........................................................................................................ 48 4.1.1 Definition .............................................................................................................. 48 4.1.2 Composition.......................................................................................................... 48 4.1.3 Reaction Process................................................................................................... 48 4.2 Heat Release calculations ............................................................................................. 50 4.2.1 Heat Release from test charge made of CPM ....................................................... 50 4.2.2 Heat Release from test charge made of Labmix ................................................... 52 4.2.3 Heat Release from Heating element ..................................................................... 54 4.3 Sparkler temperature profile analysis ........................................................................... 55 2 4.4 CPM profile analysis..................................................................................................... 60 4.5 Labmix profile analysis................................................................................................. 61 4.6 Comparison of profiles ................................................................................................. 63 5 IMAGING............................................................................................................................. 65 5.1 Development of the procedure...................................................................................... 65 5.2 Equipment
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages109 Page
-
File Size-