Mesfets – Gaas and Inp

Mesfets – Gaas and Inp

Metal-Semiconductor Interfaces • Metal-Semiconductor contact • Schottky Barrier/Diode • Ohmic Contacts • MESFET UMass Lowell 10.523 - Sanjeev Manohar Device Building Blocks UMass Lowell 10.523 - Sanjeev Manohar UMass Lowell 10.523 - Sanjeev Manohar Energy band diagram of an isolated metal adjacent to an isolated n-type semiconductor UMass Lowell 10.523 - Sanjeev Manohar Energy band diagram of a metal-semiconductor contact in thermal equilibrium. UMass Lowell 10.523 - Sanjeev Manohar Measured barrier height for metal-silicon and metal-gallium arsenide contacts UMass Lowell 10.523 - Sanjeev Manohar Energy band diagrams of metal n-type and p-type semiconductors under thermal equilibrium UMass Lowell 10.523 - Sanjeev Manohar Energy band diagrams of metal n-type and p-type semiconductors under forward bias UMass Lowell 10.523 - Sanjeev Manohar Energy band diagrams of metal n-type and p-type semiconductors under reverse bias. UMass Lowell 10.523 - Sanjeev Manohar Charge distribution electric-field distribution UMass Lowell 10.523 - Sanjeev Manohar Depletion Layer ρ = −qND 0 < x < W ρ qN ∇2V = = − D εs εs dE qN ∇E = = − D dx εs qN E(x) = D (W − x) εs UMass Lowell 10.523 - Sanjeev Manohar WW qND Vbi −V = ∫∫E(x)dx = (W − x)dx 00εs qN 0 qN W 2 = D ∫(W − x)d(W − x) = D εs W 2εs Depletion width W = 2εs (Vbi −V)/ qNq D Charge per unit area Q = QNDW = 2qεsND (Vbi −V) UMass Lowell 10.523 - Sanjeev Manohar Capacitance ∂Q qε N ε Per unit area: C = = s D = s ∂V 2(Vbi −V ) W Rearranging: 1 2(Vbi −V ) 2 = C qεsND Or: ⎡ ⎤ 2 ⎢ − 1 ⎥ ND = qε ⎢d 1 / dV ⎥ s ⎣ ( C 2 ) ⎦ UMass Lowell 10.523 - Sanjeev Manohar 1/C2 versus applied voltage for W-Si and W-GaAs diodes UMass Lowell 10.523 - Sanjeev Manohar 1/C2 vs V •If straight line – constant doping profile – slope = doping concentration •If not straight line, can be used to find profile •Intercept = Vbi can be used to find φBn φBn = Vn +Vbi kT ⎛ ND ⎞ Vn = ln⎜ ⎟ q ⎝ ni ⎠ UMass Lowell 10.523 - Sanjeev Manohar Current transport by the thermionic emission process Thermal equilibrium forward bias reverse bias UMass Lowell 10.523 - Sanjeev Manohar Thermionic emission Number of electrons with enough thermal energy to overcome barrier: ⎛ −qφ ⎞ ⎜ Bn ⎟ ⎝ kT ⎠ nth = NCe At thermal equilibrium, current going both ways is the same: ⎛ −qφ ⎞ ⎜ Bn ⎟ ⎝ kT ⎠ jm→s = js→m = C1NCe UMass Lowell 10.523 - Sanjeev Manohar Forward Bias Barrier for electrons in semiconductor is reduced by VF ⎛ −(qφ −V ) ⎞ ⎜ Bn F ⎟ ⎝ kT ⎠ nth = NCe Barrier for electrons from metal to semiconductor is the same Net current: ⎛ −q(φ −V ) ⎞ ⎛ −qφ ⎞ ⎜ Bn F ⎟ ⎜ Bn ⎟ ⎝ kT ⎠ ⎝ kT ⎠ j = js→m − jm→s = C1NCe − C1NCe ⎛ −qφBn ⎞ qV ⎜ ⎟ ⎛ F ⎞ j C N e⎝ kT ⎠ ⎜e kT 1⎟ = 1 C ⎜ − ⎟ ⎝ ⎠ C N = A *T 2 1 C UMass Lowell 10.523 - Sanjeev Manohar Forward Bias ⎛ qV ⎞ j j ⎜e kT 1⎟ = s ⎜ − ⎟ ⎝ ⎠ −qφBn 2 kT js = A *T e 4πqm * k 2 Effective Richardson Constant A* = e h3 Derive by determining current with integral of velocity and density of states j = ∫v(E)dN(E) = ∫v(E)g(E)f (E)dE UMass Lowell 10.523 - Sanjeev Manohar Forward current density vs applied voltage of W-Si and W-GaAs diodes UMass Lowell 10.523 - Sanjeev Manohar Thermionic Emission over the barrier – low doping UMass Lowell 10.523 - Sanjeev Manohar Tunneling through the barrier – high doping UMass Lowell 10.523 - Sanjeev Manohar Tunneling through the barrier Narrow depletion width for high doping – tunneling From QM 101 : Wavefunction is exponential depending on barrier width and height probability of making it to the other side ~ ψ2 −iωt −αx 2m(U − E) Ψ(x,t) = e e α = 2 h 2 I ~ exp[− 2W 2m(qφBn − qV)/ h ] W = 2εs (Vbi −V)/ qND ⎡ ⎤ − C2 (φBn −V ) C = 4 mε / I ~ exp⎢ ⎥ 2 s h ND ⎣ ⎦ UMass Lowell 10.523 - Sanjeev Manohar Contact resistance Specific Contact Resistance(based on current density) −1 ⎛ ∂J ⎞ RC ≡ ⎜ ⎟ ⎝ ∂V ⎠ V =0 For tunneling current through barrier (high doping): ⎡− C2 (φBn −V )⎤ I ~ exp⎢ ⎥ ⎣ ND ⎦ ⎛C φ ⎞ Ohmic Contact: 2 Bn RC ~ exp⎜ ⎟ ⎝ ND h ⎠ UMass Lowell 10.523 - Sanjeev Manohar Calculated and measured values of specific contact resistance UMass Lowell 10.523 - Sanjeev Manohar MESFET UMass Lowell 10.523 - Sanjeev Manohar MESFET – Qualitative Operation •No gate voltage – depletion from built-in voltage •Positive drain voltage causes reverse bias •Increased depletion width with increased V L L R = ρ = A qμnNDZ(a −W ) UMass Lowell 10.523 - Sanjeev Manohar MESFET – Qualitative Operation At higher drain voltages, W=a – pinch off at VDsat 2 qN a2 qNDW D V −V = ⇒ VDsat = −Vbi bi 2ε 2εs s UMass Lowell 10.523 - Sanjeev Manohar MESFET – Qualitative Operation Above pinchoff voltage, drain current does not increase Voltage at pinch-off point is still Vdsat UMass Lowell 10.523 - Sanjeev Manohar MESFET – Qualitative Operation Addition of gate voltage (negative) increases baseline depletion width Pinch-off occurs sooner Saturation voltage and current are reduced (narrower channel) 2 qNDa VDsat = −Vbi −VG 2εs UMass Lowell 10.523 - Sanjeev Manohar I-V Characteristics – Linear Region IDdy dV = IDdR = qμnNDZ[a −W (y)] 2ε (V(y) +V +V ) W (y) = s G bi qND qN dV = D WdW εs UMass Lowell 10.523 - Sanjeev Manohar I-V Characteristics – Linear Region IDdy = qμnNDZ[a −W (y)]dV qND = qμnNDZ[a −W ] WdW εs 2 2 W2 q μnND ID = ∫(a −W )WdW Lεs W1 2 2 q μ N ⎡ 2 2 2 3 3 ⎤ I = n D a W −W − W −W D ⎢ ()2 1 ()2 1 ⎥ 2Lεs ⎣ 3 ⎦ UMass Lowell 10.523 - Sanjeev Manohar I-V Characteristics – Linear Region 2εs (VG +Vbi ) W1 = qND 2εs (VD +VG +Vbi ) W2 = qND 3 3 ⎡V 2⎛V +V +V ⎞ 2 2⎛V +V ⎞ 2 ⎤ I = I ⎢ D − ⎜ D G bi ⎟ + ⎜ G bi ⎟ ⎥ D P V 3 V 3 V ⎣⎢ P ⎝ P ⎠ ⎝ P ⎠ ⎦⎥ 2 2 3 Zμnq NDa IP ≡ 2εsL 2 qNDa VP ≡ 2εs UMass Lowell 10.523 - Sanjeev Manohar Normalized ideal current-voltage characteristics of a MESFET with VP = 3.2 V. UMass Lowell 10.523 - Sanjeev Manohar UMass Lowell 10.523 - Sanjeev Manohar Transconductance 3 3 ⎡V 2⎛V +V +V ⎞ 2 2⎛V +V ⎞ 2 ⎤ I = I ⎢ D − ⎜ D G bi ⎟ + ⎜ G bi ⎟ ⎥ D P V 3 V 3 V ⎣⎢ P ⎝ P ⎠ ⎝ P ⎠ ⎦⎥ In Saturation: VP = VD +VG +Vbi ⇒ VDsat = VP −VG −Vbi 3 3 ⎡V −V −V 2 ⎛V −V −V +V +V ⎞ 2 2 ⎛V +V ⎞ 2 ⎤ I = I ⎢ P G bi − ⎜ P G bi G bi ⎟ + ⎜ G bi ⎟ ⎥ Dsat P V 3 V 3 V ⎣⎢ P ⎝ P ⎠ ⎝ P ⎠ ⎦⎥ 3 ⎡ ()V +V 2 2⎛V +V ⎞ 2 ⎤ I = I ⎢1− G bi − + ⎜ G bi ⎟ ⎥ Dsat P V 3 3 V ⎣⎢ P ⎝ P ⎠ ⎦⎥ 3 ⎡1 ()V +V 2⎛V +V ⎞ 2 ⎤ I = I ⎢ − G bi + ⎜ G bi ⎟ ⎥ Dsat P 3 V 3 V ⎣⎢ P ⎝ P ⎠ ⎦⎥ UMass Lowell 10.523 - Sanjeev Manohar Transconductance 3 ⎡1 (V +V ) 2⎛V +V ⎞ 2 ⎤ I = I ⎢ − G bi + ⎜ G bi ⎟ ⎥ Dsat P 3 V 3 V ⎣⎢ P ⎝ P ⎠ ⎦⎥ ∂ID gm = ∂VG VD 1 2 3 −3 1 ⎡ 2 2 ⎤ gm = IP ⎢0 − + * ()VP ()VG +Vbi ⎥ ⎣ VP 3 2 ⎦ IP ⎛ VG +Vbi ⎞ gm = ⎜1− ⎟ VP ⎝ VP ⎠ 2ZμnqNDa ⎛ VG +Vbi ⎞ gm = ⎜1− ⎟ L ⎝ VP ⎠ UMass Lowell 10.523 - Sanjeev Manohar Equivalent Circuit - High Frequency AC • Input stage looks like capacitances gate-to-channel • OtOutput capacit ances i gnored -didrain-to-source capacitance small UMass Lowell 10.523 - Sanjeev Manohar Maximum Frequency (not in saturation) •Ci is capacitance per unit area and Cgate is total capacitance of the gate Cgate = Ci ZL •F=fmax when gg(ain=1 (iout/iin=1) gm fmax = 2πCgate ⎛ εS ⎞ Cgate = ZL⎜ ⎟ ⎝W ⎠ 2ZμnqNDa μ qN a2 f ≈ L = n D max ⎛ ε ⎞ 2πL2ε 2πZL⎜ S ⎟ s W ⎝ ⎠ UMass Lowell 10.523 - Sanjeev Manohar Velocity Saturation Drain current: ID = A * qnυs = Z(a −W )qNDυs Transconductance ∂ID ∂ID ∂W Zυs εs gm = = = ∂VG ∂W ∂VG W Cutoff Frequency: gm fmax = 2πCgate Zυs εs /W εS fmax = = 2πZL()ε /W 2πL UMass Lowell 10.523 - Sanjeev s Manohar Figure 7.15. The drift velocity versus the electric field for electrons in various semiconductor materials. UMass Lowell 10.523 - Sanjeev Manohar III-V MESFETs – GaAs and InP +Semi-insulating material – high speed devices (like built-in SOI) +High Electron Mobility/Saturation Velocity – high speed +Direct Bandgap – photonic devices +Heterostructures – bandgap engineering -No Simple Oxides – MOSFETS not viable – no equivalent to SiO2 UMass Lowell 10.523 - Sanjeev Manohar III-V Transistors: GaAs No simple oxides for GOX – MOSFETS not widely used MESFET structure more common – mesa structure depletion mode transistor Gate Source Drain Semi-insulating Substrate UMass Lowell 10.523 - Sanjeev Manohar Depletion Mode GaAs MESFET •N-type material – high electron mobility •Mesa etch for isolation on SI substrate •Ohmic contacts for Source and Drain – alloyed •Shottky contact for Gate – Ti •Recessed gate – depth determines threshold UMass Lowell 10.523 - Sanjeev Manohar GaAs MESFET Fabrication Si Implant Si3N4 Semi-insulating GaAs Substrate Deposit Si 3N4 layer, implant Si and anneal for form n-type material Can also grow n-type epi layer by MBE or MOCVD UMass Lowell 10.523 - Sanjeev Manohar N-type GaAs Semi-insulating GaAs Substrate Ohmic contact formation for source and drain – NiAuGe evaporate Au(88wt%)Ge(12wt%) then Ni (+Au) anneal30l 30 m in a t450t 450°CiC in H2/N2 Au reacts with Ga from substrate – Ga vacancies Ge fills Ga vacancies – heavy n-tyygpe doping low contact resistance ohmic UMass Lowell 10.523 - Sanjeev Ge doping not uniform – spreading resistanceManohar effect Semi-insulating GaAs Substrate Gate Recess Etch Wet etching Channel depth determines pinch-off voltage Channel resistance can be monitored in-situ UMass Lowell 10.523 - Sanjeev Manohar Semi-insulating GaAs Substrate Mesa Recess Etch Wet etching Semi-insulating substrate for device isolation UMass Lowell 10.523 - Sanjeev Manohar Semi-insulatingSemi-insulating GaAs GaAs Substrate Substrate Shottky Gate Electrode deposition – Ti/Pt/Au or Ti/Pd/Au Almost any metal will form barrier Ga diffuses in many metals Ti –contact Pt or Pd barrier layer Au added for low resistivity UMass Lowell 10.523 - Sanjeev Manohar GaAs Digital Circuits: Direct Coupled FET Logic (DCFL) – lowest power and highest level of integration Uses enhancement and depletion mode transistors Enhancement mode transistors made using thinner gate recess or different doping to change threshold UMass Lowell 10.523 - Sanjeev Manohar DCFL Fabrication Sequence UMass Lowell 10.523 - Sanjeev Manohar DCFL Fabrication Sequence(cont.) UMass Lowell 10.523 - Sanjeev Manohar.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    52 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us