A Stronger Halogen Bond Involving at – Investigation of Halogen-Bonded Adducts of Ati

A Stronger Halogen Bond Involving at – Investigation of Halogen-Bonded Adducts of Ati

Towards a stronger halogen bond involving At – Investigation of halogen-bonded adducts of AtI and Bu3PO Lu Liu, Ning Guo, Julie Champion, Jérôme Graton, Gilles Montavon, Nicolas Galland, Rémi Maurice SUBATECH laboratory, Nantes, France [email protected] July 11th, 2019 1. Astatine Background Astatine << astatos (αστατος) Radioelement 2. No long-lived isotope (T1/2 ≤ 8.1h) Motivations Rarest naturally-occurring element Difficult to study Production of its isotopes limited by a cyclotron 3. Available at ultra-trace concentrations Methodology No spectroscopic tool applicable At-211: a promising candidate for nuclear medicine 4. Results Production At-211 in Nantes: E=28 MeV 4 209 211 2He + 83Bi → 85At + 2n 5. Dale R. Corson, Kenneth Ross MacKenzie, and Emilio Conclusions Segrè are recognized that discovered and isolated astatine & at the University of California, Berkeley in 1940. 2 Perspectives 1. Halogen bonds involving At Background σ-hole Halogen bond: 2. Motivations 1 Halogen bond strength: the basicity scale with diiodine (pKBI2) 퐾 c p퐾 = log 퐾 B + I2 ՞ B ⋯ I − I BI2 c Et S 4 2 Bu SO Halogen bonds involving astatine 2 2 3. Ph3PS 3 Methodology (BuO)3PO 2 (EXP) Me(EtO) PO 2 Et2O BAtI ? K 1 Me6Ph log 4. 0 PrCOOEt Results log KBAtI = 1.56(22) pKBI2 MePh r2 = 0.86312 -1 -1 0 1 2 3 4 pKBI2 5. 푲퐁퐀퐭퐈 Objective : 퐀퐭퐈 + 퐁ഥ 퐁 ⋯ 퐀퐭퐈 Conclusions Stronger halogen-bond acceptors for AtI & 1. Laurence, C. et al. J. Chem. - A Eur. J. 2011, 17 (37), 10431. Perspectives 2. N. Guo et al., Nat. Chem., 2018, 10 (4), 1–7. 3 1. Background Methodology 5 Bu PO Et S 3 2 (expected) 4 Bu SO Lewis base: tri-n-butylphosphine oxide (Bu3PO) 2 Ph PS 3 2. 3 (BuO) PO Nucleophilic region 3 Motivations BAtI 2 K Me(EtO) PO log K =4.29 expected 2 BAtI Et2O o log 1 Me6Ph PrCOOEt 0 log K = 1.56(22) pK BAtI BI2 3. MePh r2 = 0.86312 1 Methodology pKBI2=2.75 -1 -1 0 1 2 3 4 Method: liquid/liquid competition pKBI2 Principle: change of distribution coefficient of astatine (D)change of astatine speciation 4. Results Information of the stoichiometry and the D equilibrium constant 5. Conclusions [L] & Perspectives 1. Laurence, C. et al. J. Chem. - A Eur. J. 2011, 17 (37), 10431. 4 1. Experimental protocol Background Organic phase: Cyclohexane with changing concentration of Bu3PO 2. Aqueous phase: 0.05M HClO4, [NaI]fixed = 0.01 M, 0.05 M, 0.07M, 0.1M and 0.2 M and At-211 Motivations 2 h shaking Cyclohexane 3. with Bu3PO Methodology 0.05 M HClO4 with NaI and At- 211 푉aq × 퐴org 퐷 = 푉 × 퐴 Change of Bu3PO concentration org aq 4. Results 5. Conclusions & 5 Perspectives 1. Experimental protocol Background Organic phase: Cyclohexane with changing concentration of Bu3PO 2. Aqueous phase: 0.05M HClO4, [NaI]fixed = 0.01 M, 0.05 M, 0.07M, 0.1M and 0.2 M and At-211 Motivations pH=1.35±0.1, E=0.55±0.05 vs. NHE - AtI2 3. Methodology 퐁퐮ퟑ퐏퐎 퐀퐭퐈 4. Results Pourbaix diagram of astatine in non- - 4 complexing aqueous medium 1-3 Speciation of At(+Ι) in function of [I ] 퐀퐭퐈 − 퐀퐭퐈ퟐ Only AtI is possible to interact with Bu3PO in the organic phase 퐈− 5. 1. J. Champion et al., J. Phys. Chem. A, 2010, 114 (1), 576–582. Conclusions 2. J. Champion et al., J. Phys. Chem. A, 2013, 117 (9), 1983–1990. & 3. D. C. Sergentu et al., Chem. - A Eur. J., 2016, 22 (9), 2964–2971. Perspectives 4. N. Guo et al., Angew. Chemie - Int. Ed., 2016, 55 (49), 15369–15372. 5 1. Model of experimental results Background Take the example of [I-]=0.1M Model 퐾 2. − − AtI + I ՞ AtI2 Motivations 3 10 퐷1 - -1 AtI ՞ AtI [I ] = 0.1 mol L 2 퐷2 10 B ՞ Bഥ 3. 퐾BAtI 101 AtI + Bഥ BAtI Methodology 퐁ഥ 퐀퐭퐈 0 10 퐁퐀퐭퐈 D -1 10 4. Results -2 퐀퐭퐈 10 − 퐀퐭퐈ퟐ 퐈− 10-3 퐁 10-6 10-5 10-4 10-3 10-2 10-1 5. Conclusions [Bu PO] / mol.L-1 3 & 6 Perspectives 1. Model of experimental results Background Take the example of [I-]=0.1M Model 퐾 2. − − AtI + I ՞ AtI2 Motivations 3 10 퐷1 AtI ՞ AtI [I-] = 0.1 mol L-1 2 퐷2 10 B ՞ Bഥ 3. 퐾BAtI 101 AtI + Bഥ BAtI Methodology 퐁ഥ 퐾 퐀퐭퐈 0 ഥ B2AtI 10 AtI + 2B B2AtI 퐁퐀퐭퐈 D 퐁 퐀퐭퐈 -1 ퟐ 10 4. Results -2 퐀퐭퐈 10 − 퐀퐭퐈ퟐ 퐈− 10-3 퐁 10-6 10-5 10-4 10-3 10-2 10-1 5. -1 Conclusions [Bu3PO] / mol L & 6 Perspectives 1. Model of experimental results Background Take the example of [I-]=0.1M Model 퐾 2. − − AtI + I ՞ AtI2 Motivations 3 10 퐷1 AtI ՞ AtI [I-] = 0.1 mol L-1 2 퐷2 10 B ՞ Bഥ 3. 퐾BAtI 101 AtI + Bഥ BAtI Methodology 퐁ഥ 퐾 퐀퐭퐈 0 ഥ B2AtI 10 AtI + 2B B2AtI 퐁퐀퐭퐈 D 퐁 퐀퐭퐈 -1 ퟐ 10 4. Results -2 퐀퐭퐈 10 − 퐀퐭퐈ퟐ 퐈− 10-3 퐁 10-6 10-5 10-4 10-3 10-2 10-1 5. -1 Conclusions [Bu3PO] / mol L & 6 Perspectives 1. Model of experimental results Background Take the example of [I-]=0.1M Model 퐾 2. − − AtI + I ՞ AtI2 Motivations 3 10 퐷1 - -1 AtI ՞ AtI [I ] = 0.1 mol L 퐷2 102 B ՞ Bഥ 3. 퐾BAtI 101 AtI + Bഥ BAtI Methodology 퐁ഥ 퐾B2AtI 퐀퐭퐈 0 ഥ 10 AtI + 2B B2AtI 퐁퐀퐭퐈 D 퐷3 퐁ퟐ퐀퐭퐈 -1 10 BAtI ՞ BAtI 4. 퐷4 Results -2 B2AtI ՞ B2AtI 퐀퐭퐈 10 − 퐀퐭퐈ퟐ − -3 퐈 퐁 10 퐁퐀퐭퐈 10-6 10-5 10-4 10-3 10-2 10-1 5. 퐁 퐀퐭퐈 -1 ퟐ Conclusions [Bu3PO] / mol.L & 6 Perspectives 1. Model of experimental results Background Take the example of [I-]=0.1M Model 퐾 2. − − AtI + I ՞ AtI2 Motivations 3 10 퐷1 - -1 AtI ՞ AtI [I ] = 0.1 mol L 퐷2 102 B ՞ Bഥ 3. 퐾BAtI 101 AtI + Bഥ BAtI Methodology 퐁ഥ 퐾B2AtI 퐀퐭퐈 0 ഥ 10 AtI + 2B B2AtI 퐁퐀퐭퐈 D 퐷3 퐁ퟐ퐀퐭퐈 -1 10 BAtI ՞ BAtI 4. 퐷4 Results -2 B2AtI ՞ B2AtI 퐀퐭퐈 10 − 퐀퐭퐈ퟐ 퐈− 10-3 퐁 -6 -5 -4 -3 -2 -1 퐁퐀퐭퐈 10 10 10 10 10 10 log KBAtI = 4.16±0.34 5. 퐁ퟐ퐀퐭퐈 Conclusions [Bu PO] / mol.L-1 3 log KB2AtI = 8.02±0.66 & 6 Perspectives 1. 1:1 complex: a stronger halogen bond Background 퐾 ഥ BAtI log K = 4.16±0.34 퐈퐀퐭 ⋯ 퐁 ? AtI + B BAtI BAtI 2. 179.5° 5 Motivations Et S 2 Bu3PO 4 Bu SO 2 2.606 Å log KBAtI Ph3PS 3 (BuO) PO Experimental 4.16±0.34 3 BAtI BAtI 2 Me(EtO)2PO K 1 K Et O 3. dhf-SVPD-2c 4.54 2 log log 1 Methodology PrCOOEt Me Ph m-aug-cc-pVDZ-PP 1 4.37 6 0 log KBAtI = 1.56(22) pKBI2 MePh r2 = 0.86312 -1 -1 0 1 2 3 4 pKBI2 Good agreement with theoretical calculations 4. The most stable conformer of BAtI Results Follow the tendency of previous study Nearly directional interaction in the calculated structure 퐈퐀퐭 ⋯ 퐁 A stronger halogen bond involving astatine than we found before 5. Conclusions 1. Two-component B3LYP calculations in conjunction with dhf-SVPD-2c and aug-cc-pVDZ-PP (AVDZ) basis set. By Nicolas Galland (CEISAM) & 2. Calculated structures at the B3LYP/pVDZ level of theory for the most stable conformer specie corresponding to the interaction between AtI and Bu3PO. Perspectives By Nicolas Galland (CEISAM) 7 1. 1:2 complex: what it is ? Background 퐾B2AtI AtI + 2Bഥ B AtI log KB2AtI = 8.02±0.66 퐁 ⋯ 퐀퐭퐈 ⋯ 퐁 ? 2 2. Motivations 3. Methodology 4. Results 1 MEP of a) BAtI and b) AtI The most stable conformer of B2AtI Formation of a halogen bond deactivated the electrophilic site of iodine atom 5. 2 2 hydrogen bonds between two Bu3PO molecules in B2AtI 퐈퐀퐭 ⋯ ퟐ퐁 Conclusions 1. Molecular electrostatic potential calculated at the B3LYP/AVDZ level of theory. By Nicolas Galland (CEISAM) & 2. Calculated structures at the B3LYP/pVDZ level of theory for the most stable conformer specie corresponding to the interaction between AtI and Bu3PO. Perspectives By Nicolas Galland (CEISAM) 8 1. Conclusions and perspectives Background Conclusions 2. Motivations Two equilibria between AtI and Bu3PO were evidenced 퐾BAtI AtI + Bഥ BAtI, log KBAtI = 4.16±0.34 → A stronger halogen bond involving astatine 3. 퐾 ഥ B2AtI Methodology AtI + 2B B2AtI, log KB2AtI = 8.02±0.66 → First 1:2 complex between AtI and Lewis base but only one halogen bond involved in Perspectives 4. Results Stronger halogen bond acceptors for AtI Possibility to form B ⋯ AtI ⋯ B complex with Lewis base Interaction between AtX and Lewis bases with X = Br or Cl 5. Conclusions & 9 Perspectives Nicolas Galland Ning Guo Rémi Maurice Gilles Montavon Thanks for your attention! Julie Champion Jérôme Graton.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    15 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us