
<p><strong>Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 February 2021 </strong></p><p><a href="/goto?url=https://doi.org/10.20944/preprints202102.0395.v1" target="_blank"><strong>doi:10.20944/preprints202102.0395.v1 </strong></a></p><p>Asymptotic freedom, quark confinement, proton spin crisis, neutron structure, dark matters, and relative force strengths </p><p>Jae-Kwang Hwang <br>JJJ Physics Laboratory, Brentwood, TN 37027 USA </p><p>Abstract: The relative force strengths of the Coulomb forces, gravitational forces, dark matter forces, weak forces and strong forces are compared for the dark matters, leptons, quarks, and normal matters (p and n baryons) in terms of the 3-D quantized space model. The quark confinement and asymptotic freedom are explained by the CC merging to the A(CC=-5)<sub style="top: 0.08em;">3 </sub>state. The proton with the (EC,LC,CC) charge configuration of p(1,0,-5) is p(1,0) + A(CC=-5)<sub style="top: 0.08em;">3</sub>. The A(CC=-5)<sub style="top: 0.08em;">3 </sub>state has the 99.6% of the proton mass. The three quarks in p(1,0,-5) are asymptotically free in the EC and LC space of p(1,0) and are strongly confined in the CC space of A(CC=-5)<sub style="top: 0.08em;">3</sub>. This means that the lepton beams in the deep inelastic scattering interact with three quarks in p(1,0) by the EC interaction and weak interaction. Then, the observed spin is the partial spin of p(1,0) which is 32.6 % of the total spin (1/2) of the proton. The A(CC=-5)<sub style="top: 0.08em;">3 </sub>state has the 67.4 % of the proton spin. This explains the proton spin crisis. The EC charge distribution of the proton is the same to the EC charge distribution of p(1,0) which indicates that three quarks in p(1,0) are mostly near the proton surface. From the EC charge distribution of neutron, the 2 lepton system (called as the koron) of the 휋<sup style="top: -0.39em;">ꢁ</sup>(푒휈ꢃ ) koron is, for the first time, reported in the present work. </p><p></p><ul style="display: flex;"><li style="flex:1">ꢂ</li><li style="flex:1">ꢀ</li></ul><p></p><p>Key words: Quark confinement, Asymptotic freedom, Relative force strength, Dark matters, Proton crisis, Deep inelastic scattering, Neutron structure, Two lepton system. </p><p>1. Introduction <br>In modern particle physics, the three-quark system shows the asymptotic freedom and quark confinement within the baryon. The asymptotic freedom and quark confinement have been explained by introducing the gluon field at the short distance. This strong force through the gluons has the characteristics different from other forces like the Coulomb forces and gravitational forces. The strong force is nearly free at the very short distance and is getting constant or even stronger with increasing of the distance between the quarks. This is called as the asymptotic freedom. Experimentally it has been observed that quarks are acting like being nearly free inside the baryon [1]. In the energy point of view, the interactions between quarks is weaker at the high energy and stronger at the low energy. This asymptotic freedom was discovered by Gross, Wilczek and Politzer [2,3]. The quark confinement is closely related to the asymptotic freedom through the gluons. The quark confinement takes place when the total color charge is neutral. The origins of the quark confinement are not clearly understood in terms of QCD. </p><p>In the present work, the properties of quark confinement and asymptotic freedom are explained without introducing the gluons of the quantum chromodynamics (QCD). Instead of the gluons, the strong force bosons [4] are introduced. The present analysis in Figs. 1-5 is based on the 3-D quantized space model. The fermions are drawn as the half circles [4] in the Euclidean space as shown in Fig. 4. The bosons are drawn as the full circles [4] in the Euclidean space as shown in Fig. 4. The brief review [4,5] is given in section 2 before the asymptotic freedom and quark confinement inside baryons like proton and neutron are explained in sections 3 and 4. The quark </p><p>© 2021 by the author(s). Distributed under a <a href="/goto?url=http://creativecommons.org/licenses/by/4.0/" target="_blank">Creative Commons CC BY </a>license. </p><p><strong>Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 February 2021 </strong></p><p><a href="/goto?url=https://doi.org/10.20944/preprints202102.0395.v1" target="_blank"><strong>doi:10.20944/preprints202102.0395.v1 </strong></a></p><p>confinement and asymptotic freedom are closely related to the strong boson force including the color charge (CC) force within the force range of x < 10<sup style="top: -0.38em;">-18 </sup>m. </p><p>Normal matter/ leptons <br>Normal matter <br>Dark matter <br>Normal matter </p><p>G<sub style="top: 0.1799em;">N </sub>G<sub style="top: 0.1799em;">Naa</sub>(m<sub style="top: 0.1799em;">CC</sub>) <br>G<sub style="top: 0.1901em;">N </sub>G<sub style="top: 0.1901em;">Nll</sub>(m<sub style="top: 0.1901em;">EC</sub>) m<sub style="top: 0.1901em;">1</sub>m<sub style="top: 0.1901em;">2 </sub>m<sub style="top: 0.18em;">1</sub>m<sub style="top: 0.18em;">2 </sub></p><p>F<sub style="top: 0.18em;">G </sub>= G<sub style="top: 0.18em;">N </sub></p><p>r<sup style="top: -0.2298em;">2 </sup></p><p>F<sub style="top: 0.1901em;">G </sub>= G<sub style="top: 0.1901em;">N </sub></p><p>r<sup style="top: -0.2298em;">2 </sup></p><p>p, n </p><ul style="display: flex;"><li style="flex:1">p, n </li><li style="flex:1">B1 </li></ul><p>p, n, e </p><p></p><ul style="display: flex;"><li style="flex:1">k</li><li style="flex:1">k<sub style="top: 0.1902em;">ll</sub>(EC) </li></ul><p></p><p>F<sub style="top: 0.1902em;">C </sub></p><p>EC<sub style="top: 0.1801em;">1</sub>EC<sub style="top: 0.1801em;">2 </sub></p><p>r<sup style="top: -0.2299em;">2 </sup></p><p>m <sub style="top: 0.1803em;">2</sub>= m<sub style="top: 0.1803em;">2CC </sub></p><p>m<sub style="top: 0.1902em;">2</sub>= m<sub style="top: 0.1902em;">2EC </sub>m<sub style="top: 0.1901em;">1 </sub>= m<sub style="top: 0.1901em;">1CC </sub></p><p>F<sub style="top: 0.18em;">C </sub>= k </p><p>m<sub style="top: 0.18em;">1 </sub>= m<sub style="top: 0.18em;">1EC </sub></p><p>Normal matter /leptons <br>Dark matter <br>Dark matter </p><p>G<sub style="top: 0.1802em;">N </sub>G<sub style="top: 0.1802em;">Nll</sub>(m<sub style="top: 0.1802em;">EC</sub>) <br>G<sub style="top: 0.1802em;">N </sub>G<sub style="top: 0.1802em;">Ndd</sub>(m<sub style="top: 0.1802em;">EC</sub>) </p><p>Leptons </p><p>m<sub style="top: 0.1901em;">1</sub>m<sub style="top: 0.1901em;">2 </sub>m<sub style="top: 0.1804em;">1</sub>m<sub style="top: 0.1804em;">2 </sub></p><p>F<sub style="top: 0.1903em;">G </sub>= G<sub style="top: 0.1903em;">N </sub></p><p>r<sup style="top: -0.2299em;">2 </sup></p><p>F<sub style="top: 0.1803em;">G </sub>= G<sub style="top: 0.1803em;">N </sub>k</p><p>r<sup style="top: -0.2299em;">2 </sup></p><p>B1 p, n, e </p><ul style="display: flex;"><li style="flex:1">B1 </li><li style="flex:1">e</li></ul><p></p><ul style="display: flex;"><li style="flex:1">k</li><li style="flex:1">k<sub style="top: 0.1903em;">dd</sub>(EC) </li></ul><p></p><p>F<sub style="top: 0.1802em;">C </sub></p><p>k<sub style="top: 0.19em;">ll</sub>(EC) m <sub style="top: 0.1902em;">2</sub>= m<sub style="top: 0.1902em;">2EC </sub><br>EC<sub style="top: 0.1903em;">1</sub>EC<sub style="top: 0.1903em;">2 </sub></p><p>r<sup style="top: -0.2298em;">2 </sup></p><p>m <sub style="top: 0.1803em;">2</sub>= m<sub style="top: 0.1803em;">2EC </sub></p><p>m<sub style="top: 0.1902em;">1 </sub>= m<sub style="top: 0.1902em;">1EC </sub>m<sub style="top: 0.1804em;">1 </sub>= m<sub style="top: 0.1804em;">1EC </sub></p><p>F<sub style="top: 0.1902em;">C </sub>= k <br>For normal matter (p,n), </p><p>m = m<sub style="top: 0.1904em;">1CC </sub>+ m<sub style="top: 0.1904em;">1EC </sub>m<sub style="top: 0.1904em;">1CC</sub>, m<sub style="top: 0.1904em;">1CC </sub>> m<sub style="top: 0.1904em;">1EC </sub></p><p>G<sub style="top: 0.1903em;">N </sub>= G<sub style="top: 0.1903em;">Ndd</sub>(m<sub style="top: 0.1903em;">EC</sub>) G<sub style="top: 0.1903em;">Naa</sub>(m<sub style="top: 0.1903em;">CC</sub>) > G<sub style="top: 0.1903em;">Nll</sub>(m<sub style="top: 0.1903em;">EC</sub>) </p><p>Fig. 1. The gravitational and Coulomb forces are compared for the normal matters, dark matters, and leptons. See Figs. 2-5 for details. </p><p>Bastons (EC) , DM EC </p><ul style="display: flex;"><li style="flex:1">Leptons(EC,LC) </li><li style="flex:1">Quarks(EC,LC,CC) </li></ul><p>EC </p><p>F<sub style="top: 0.2em;">c</sub>(q) = </p><p>EC 0</p><p>x1x2x3 </p><p>EC = -1/3 </p><p>m<sub style="top: 0.2103em;">EC </sub></p><p>X1 -2/3 X2 -5/3 X3 -8/3 Total -5 <br>2/3 -1/3 -4/3 <br>-1 </p><p>F<sub style="top: 0.1995em;">Cdd</sub>(EC) k<sub style="top: 0.1895em;">dd</sub>(EC) <br>F<sub style="top: 0.1995em;">Cll</sub>(EC) k<sub style="top: 0.1997em;">ll</sub>(EC) <br>F<sub style="top: 0.1995em;">Cqq</sub>(EC) k<sub style="top: 0.1996em;">qq</sub>(EC) </p><p>F<sub style="top: 0.2104em;">g </sub>= F<sub style="top: 0.2104em;">g </sub>(m) = F<sub style="top: 0.2103em;">B </sub>= F<sub style="top: 0.2103em;">B</sub>(m) = </p><p>-1 -2 -3 </p><p>x4x5x6 </p><p>LC = 0 <br>F<sub style="top: 0.2003em;">c </sub>= F<sub style="top: 0.2003em;">c</sub>(EC)+F<sub style="top: 0.2003em;">c</sub>(LC)+F<sub style="top: 0.2003em;">c</sub>(CC) = ma<sub style="top: 0.2003em;">c </sub></p><p>F<sub style="top: 0.2103em;">g </sub>= F<sub style="top: 0.2103em;">g</sub>(m<sub style="top: 0.2103em;">EC</sub>)+F<sub style="top: 0.2103em;">g</sub>(m<sub style="top: 0.2103em;">LC</sub>)+F<sub style="top: 0.2103em;">g</sub>(m<sub style="top: 0.2103em;">CC</sub>) = ma<sub style="top: 0.2103em;">g </sub>F<sub style="top: 0.2002em;">B </sub>= F<sub style="top: 0.2002em;">B</sub>(m<sub style="top: 0.2002em;">EC</sub>)+F<sub style="top: 0.2002em;">B</sub>(m<sub style="top: 0.2002em;">LC</sub>)+F<sub style="top: 0.2002em;">B</sub>(m<sub style="top: 0.2002em;">CC</sub>) = ma<sub style="top: 0.2002em;">B </sub></p><p></p><ul style="display: flex;"><li style="flex:1">LC </li><li style="flex:1">LC </li></ul><p>0</p><p>DM: Dark matter </p><p>X4 X5 <br>-2/3 -5/3 -8/3 <br>-5 </p><p>F<sub style="top: 0.1996em;">Cll</sub>(LC) k<sub style="top: 0.1996em;">ll</sub>(LC) <br>F<sub style="top: 0.1996em;">Cqq</sub>(LC) k<sub style="top: 0.1996em;">qq</sub>(LC) <br>Coulomb force </p><p>q<sub style="top: 0.1897em;">1</sub>q<sub style="top: 0.1897em;">2 </sub></p><p>-1 </p><p>x7x8x9 </p><p>CC = -2/3 </p><p>F<sub style="top: 0.1993em;">c </sub>= k </p><p>r<sup style="top: -0.2504em;">2 </sup></p><p></p><ul style="display: flex;"><li style="flex:1">X6 </li><li style="flex:1">-2 </li></ul><p></p><p>m = m<sub style="top: 0.2004em;">EC </sub>+ m<sub style="top: 0.2004em;">LC </sub>+m<sub style="top: 0.2004em;">CC </sub></p><p></p><ul style="display: flex;"><li style="flex:1">Total </li><li style="flex:1">-3 </li></ul><p></p><p>m<sub style="top: 0.2001em;">CC </sub></p><p>d quark m(d) = m<sub style="top: 0.2099em;">EC </sub>m<sub style="top: 0.2099em;">CC </sub></p><p>F<sub style="top: 0.1993em;">cll </sub>F<sub style="top: 0.1993em;">cll</sub>(EC), at r < 10<sup style="top: -0.2406em;">-18 </sup>F<sub style="top: 0.1997em;">B </sub>> F<sub style="top: 0.1997em;">C </sub>(EC) m</p><p>CC </p><p></p><ul style="display: flex;"><li style="flex:1">k<sub style="top: 0.1997em;">ll </sub>k (EC) </li><li style="flex:1">for leptons </li></ul><p></p><p>ll </p><p>+</p><p>F<sub style="top: 0.1992em;">Cqq</sub>(CC) k<sub style="top: 0.1998em;">qq</sub>(CC) k<sub style="top: 0.1993em;">aa</sub>(CC) </p><p>m , E = mc<sup style="top: -0.2599em;">2</sup>, E<sub style="top: 0.2098em;">k </sub>= mv<sup style="top: -0.2599em;">2</sup>/2 </p><p>X7 X8 <br>-2/3(r) -5/3(g) -8/3(b) <br>-5 </p><p>k<sub style="top: 0.1995em;">ll</sub>(EC) > k<sub style="top: 0.1995em;">ll</sub>(LC) <br>X9 k<sub style="top: 0.1996em;">qq</sub>(CC) k<sub style="top: 0.1996em;">ll</sub>(LC) = k<sub style="top: 0.1996em;">dd</sub>(EC) k<sub style="top: 0.1993em;">ll</sub>(EC) k<sub style="top: 0.1993em;">qq</sub>(LC) </p><p>m<sub style="top: 0.2102em;">EC </sub>and m<sub style="top: 0.2102em;">CC </sub>are strongly coupled and stacked at the same position. m<sub style="top: 0.21em;">EC </sub>and m<sub style="top: 0.21em;">CC </sub>move together. The strong resistance is increased with increasing of the distance between m<sub style="top: 0.2099em;">EC </sub>and m<sub style="top: 0.2099em;">CC </sub></p><p>Total </p><p>k<sub style="top: 0.1896em;">qq</sub>(EC) k<sub style="top: 0.1896em;">qq</sub>(LC) > k<sub style="top: 0.1896em;">qq</sub>(CC) </p><ul style="display: flex;"><li style="flex:1">k</li><li style="flex:1">k<sub style="top: 0.1995em;">ll</sub>(EC) for baryons, mesons, confined quarks </li></ul><p>F<sub style="top: 0.1996em;">c </sub>F<sub style="top: 0.1996em;">cll</sub>(EC), </p><p>.</p><p>Fig. 2. Coulomb forces and Coulomb constants for the elementary fermions. Three partial masses of m<sub style="top: 0.08em;">EC</sub>, m<sub style="top: 0.08em;">LC </sub>and m<sub style="top: 0.08em;">CC </sub>are strongly coupled and move together for the elementary fermions. The d quark is shown as one example. </p><p><strong>Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 February 2021 </strong></p><p><a href="/goto?url=https://doi.org/10.20944/preprints202102.0395.v1" target="_blank"><strong>doi:10.20944/preprints202102.0395.v1 </strong></a></p><p>Bastons (EC) , DM EC </p><ul style="display: flex;"><li style="flex:1">Leptons(EC,LC) </li><li style="flex:1">Quarks(EC,LC,CC) </li></ul><p>EC </p><p>Asymptotic freedom (AF): <br>(Free quarks) </p><p>EC 0</p><p>F<sub style="top: 0.1297em;">C </sub>(EC) > F<sub style="top: 0.1297em;">B</sub>=0 </p><p>X1 -2/3 X2 -5/3 X3 -8/3 Total -5 <br>2/3 -1/3 -4/3 <br>-1 </p><p>F<sub style="top: 0.16em;">Bdd</sub>(m<sub style="top: 0.16em;">EC </sub></p><p>)</p><p>F<sub style="top: 0.16em;">Bll</sub>(m<sub style="top: 0.16em;">EC </sub></p><p>)</p><p>F<sub style="top: 0.16em;">Bqq</sub>(m<sub style="top: 0.16em;">EC </sub>G<sub style="top: 0.15em;">NBqq</sub>(m<sub style="top: 0.15em;">EC </sub></p><p>)</p><ul style="display: flex;"><li style="flex:1">at 10<sup style="top: -0.1899em;">-18 </sup>m < x<sub style="top: 0.1601em;">EC </sub>10<sup style="top: -0.1899em;">-15 </sup></li><li style="flex:1">m</li></ul><p></p><p>-1 -2 -3 </p><p>G<sub style="top: 0.15em;">NBll</sub>(m<sub style="top: 0.15em;">EC </sub></p><p>))<br>))</p><p>G<sub style="top: 0.1599em;">NBdd</sub>(m<sub style="top: 0.1599em;">EC </sub></p><p>)<br>Mesons(EC,LC) with A(CC=0): Color charge (CC) merging energy (m<sub style="top: 0.1597em;">A</sub>) of a quark and anti-quark is 132.8 MeV for a p<sup style="top: -0.1901em;">0 </sup>meson. </p><p></p><ul style="display: flex;"><li style="flex:1">LC </li><li style="flex:1">LC </li></ul><p></p><ul style="display: flex;"><li style="flex:1">0</li><li style="flex:1">X4 </li><li style="flex:1">-2/3 </li></ul><p>-5/3 -8/3 <br>-5 </p><p>F<sub style="top: 0.1599em;">Bll</sub>(m<sub style="top: 0.1599em;">LC </sub>G<sub style="top: 0.1599em;">NBll</sub>(m<sub style="top: 0.1599em;">LC </sub></p><p>)</p><p>F<sub style="top: 0.1599em;">Bqq</sub>(m<sub style="top: 0.1599em;">LC </sub>G<sub style="top: 0.1498em;">NBqq</sub>(m<sub style="top: 0.1498em;">LC </sub></p><p>)<br>Boson force </p><p>m<sub style="top: 0.1601em;">B </sub></p><p>X5 X6 <br>-1 </p><p>G<sub style="top: 0.1498em;">NB </sub></p><p>=</p><p>G<sub style="top: 0.1498em;">N </sub></p><p>-2 </p><p>m<sub style="top: 0.1599em;">g </sub></p><p></p><ul style="display: flex;"><li style="flex:1">Total </li><li style="flex:1">-3 </li></ul><p></p><p>m<sub style="top: 0.1599em;">1</sub>m<sub style="top: 0.1599em;">2 </sub>r<sup style="top: -0.2003em;">2 </sup><br>F<sub style="top: 0.1497em;">B </sub>= G<sub style="top: 0.1497em;">NB </sub></p><p>CC </p><p>at r < 10<sup style="top: -0.2002em;">-18 </sup>F<sub style="top: 0.1599em;">B </sub>> F<sub style="top: 0.1599em;">C </sub>(EC) m<br>Baryons(EC,LC) with A(CC=-5)<sub style="top: 0.1498em;">3 </sub>: Color charge (CC) merging energy (m<sub style="top: 0.1599em;">A</sub>) of three quarks is 935.3 MeV for a neutron. </p><p>X7 X8 <br>-2/3(r) -5/3(g) -8/3(b) <br>-5 </p><p></p><ul style="display: flex;"><li style="flex:1">G<sub style="top: 0.1499em;">NBll</sub>(m<sub style="top: 0.1499em;">LC</sub>) > G<sub style="top: 0.1499em;">NBll</sub>(m<sub style="top: 0.1499em;">EC </sub></li><li style="flex:1">)</li></ul><p></p><p>F<sub style="top: 0.1499em;">Bqq</sub>(m<sub style="top: 0.1499em;">CC </sub>G<sub style="top: 0.16em;">NBqq</sub>(m<sub style="top: 0.16em;">CC </sub>G<sub style="top: 0.1598em;">NBaa</sub>(m<sub style="top: 0.1598em;">CC </sub></p><p>)</p><ul style="display: flex;"><li style="flex:1">G<sub style="top: 0.16em;">NBqq</sub>(m<sub style="top: 0.16em;">CC</sub>)>G<sub style="top: 0.16em;">NBqq</sub>(m<sub style="top: 0.16em;">LC</sub>)>G<sub style="top: 0.16em;">NBqq</sub>(m<sub style="top: 0.16em;">EC </sub></li><li style="flex:1">)</li><li style="flex:1">)</li></ul><p>)</p><p>X9 </p><p>G<sub style="top: 0.15em;">NBqq</sub>(m<sub style="top: 0.15em;">CC</sub>)=G<sub style="top: 0.15em;">NBll</sub>(m<sub style="top: 0.15em;">LC</sub>)=G<sub style="top: 0.15em;">NBdd</sub>(m<sub style="top: 0.15em;">EC </sub>G<sub style="top: 0.16em;">NBqq</sub>(m<sub style="top: 0.16em;">LC</sub>)=G<sub style="top: 0.16em;">NBll</sub>(m<sub style="top: 0.16em;">EC</sub>)>G<sub style="top: 0.16em;">NBqq</sub>(m<sub style="top: 0.16em;">EC </sub></p><p>))</p><p>Total </p><p>F<sub style="top: 0.1499em;">B </sub>F<sub style="top: 0.1499em;">Baa</sub>(m<sub style="top: 0.1499em;">CC</sub>), </p><p>G<sub style="top: 0.1598em;">NB </sub>G<sub style="top: 0.1598em;">NBaa</sub>(m<sub style="top: 0.1598em;">CC </sub></p><p></p><ul style="display: flex;"><li style="flex:1">)</li><li style="flex:1">G<sub style="top: 0.1598em;">NBqq</sub>(m<sub style="top: 0.1598em;">CC</sub>) for baryons </li></ul><p></p><p>Fig. 3. Boson forces and boson force constants for the elementary fermions. Boson forces include the dark matter forces, weak forces, and strong forces. </p><p>Magnetic charges (|q<sub style="top: 0.1797em;">m</sub>| = c<sup style="top: -0.2303em;">2</sup>Dt) and electric charges (|q| = cDt) along the time axis are independent of the space directions. </p><p>Bastons (EC) , DM EC </p><ul style="display: flex;"><li style="flex:1">Leptons(EC,LC) </li><li style="flex:1">Quarks(EC,LC,CC) </li></ul><p></p><ul style="display: flex;"><li style="flex:1">EC </li><li style="flex:1">EC </li></ul><p></p><ul style="display: flex;"><li style="flex:1">0</li><li style="flex:1">X1 -2/3 </li></ul><p>X2 -5/3 X3 -8/3 Total -5 <br>2/3 -1/3 -4/3 <br>-1 </p><p>S=1/2 Fermions </p><p>ct </p><p>F<sub style="top: 0.1899em;">Gdd</sub>(m<sub style="top: 0.1899em;">EC </sub>G<sub style="top: 0.1901em;">Ndd</sub>(m<sub style="top: 0.1901em;">EC </sub></p><p>))</p><p>F<sub style="top: 0.1899em;">Gll</sub>(m<sub style="top: 0.1899em;">EC </sub></p><p>)</p><p>F<sub style="top: 0.1899em;">Gqq</sub>(m<sub style="top: 0.1899em;">EC </sub>G<sub style="top: 0.1801em;">Nqq</sub>(m<sub style="top: 0.1801em;">EC </sub></p><p>))</p><p>S=2 </p><ul style="display: flex;"><li style="flex:1">S=1 </li><li style="flex:1">S=1 </li></ul><p>graviton <br>Photon(2EM wave) </p><p>-1 -2 -3 </p><p>Bosons </p><p>G<sub style="top: 0.18em;">Nll</sub>(m<sub style="top: 0.18em;">EC </sub></p><p>)</p><p>ct </p><p>q<sub style="top: 0.1796em;">m1 </sub>= c<sup style="top: -0.2304em;">2</sup>Dt </p><ul style="display: flex;"><li style="flex:1">q<sub style="top: 0.18em;">m </sub>= c<sup style="top: -0.2301em;">2</sup>Dt </li><li style="flex:1">q=q<sub style="top: 0.18em;">1</sub>+q<sub style="top: 0.18em;">2 </sub></li></ul><p></p><p>-q<sub style="top: 0.1895em;">m1 </sub></p><p>cDt </p><p>LC -2/3 -5/3 -8/3 <br>-5 <br>LC 0</p><p>q<sub style="top: 0.1796em;">1</sub>>0 </p><p>q<sub style="top: 0.1897em;">1 </sub></p><p></p><ul style="display: flex;"><li style="flex:1">q = -cDt </li><li style="flex:1">q=0 </li></ul><p>q<0 </p><p>X4 </p><p>F<sub style="top: 0.19em;">Gll</sub>(m<sub style="top: 0.19em;">LC</sub>) G<sub style="top: 0.1902em;">Nll</sub>(m<sub style="top: 0.1902em;">LC</sub>) <br>F<sub style="top: 0.19em;">Gqq</sub>(m<sub style="top: 0.19em;">LC</sub>) G<sub style="top: 0.1802em;">Nqq</sub>(m<sub style="top: 0.1802em;">LC</sub>) <br>DM: Dark matter Gravitation force </p><p>x1x2x3 x1x2x3 </p><p>X5 X6 <br>-1 </p><p>cDt </p><p>-q<sub style="top: 0.1895em;">m1 </sub></p><p>cDt </p><p>q<sub style="top: 0.1897em;">m </sub></p><p>-q<sub style="top: 0.1795em;">1 </sub></p><p>q<sub style="top: 0.1896em;">m1 </sub></p><p>q<sub style="top: 0.1897em;">2</sub><0 </p><p>-2 </p><p>m<sub style="top: 0.1803em;">1</sub>m<sub style="top: 0.1803em;">2 </sub></p><p>q<sub style="top: 0.1799em;">m1 </sub>= c<sup style="top: -0.2301em;">2</sup>Dt q=q<sub style="top: 0.1895em;">1</sub>-q<sub style="top: 0.1895em;">1</sub>=0 </p><p></p><ul style="display: flex;"><li style="flex:1">Total </li><li style="flex:1">-3 </li></ul><p></p><p>F<sub style="top: 0.1801em;">G </sub>= G<sub style="top: 0.1801em;">N </sub></p><p>r<sup style="top: -0.2298em;">2 </sup></p><p></p><ul style="display: flex;"><li style="flex:1">q<sub style="top: 0.1798em;">m</sub>=q<sub style="top: 0.1798em;">m1</sub>–q<sub style="top: 0.1798em;">m1</sub>=0 </li><li style="flex:1">q<sub style="top: 0.1798em;">m</sub>=0 </li></ul><p></p><p>q<sub style="top: 0.1897em;">m </sub></p><p>q<sub style="top: 0.1896em;">m</sub><0 q<sub style="top: 0.1897em;">m</sub>= q<sub style="top: 0.1897em;">m1</sub>-q<sub style="top: 0.1897em;">m1 </sub>=0 </p><p>-q<sub style="top: 0.1797em;">m1 </sub></p><p>m<sub style="top: 0.19em;">B </sub>m<sub style="top: 0.1799em;">g </sub></p><p>CC </p><p>G<sub style="top: 0.19em;">NB </sub></p><p>=</p><p>G<sub style="top: 0.19em;">N </sub></p><p>G<sub style="top: 0.1798em;">Nll</sub>(m<sub style="top: 0.1798em;">EC</sub>) = G<sub style="top: 0.1798em;">Nqq</sub>(m<sub style="top: 0.1798em;">LC</sub>) </p><p>X7 X8 <br>-2/3(r) -5/3(g) </p><p>Inside E time loop is the magnetic monopole of q<sub style="top: 0.1798em;">m </sub>Particles are shown as the 1-D lines in x1x2x3 space. <br>-c<sup style="top: -0.2303em;">2</sup>Dt </p><p>F<sub style="top: 0.1901em;">Gqq</sub>(m<sub style="top: 0.1901em;">CC </sub>G<sub style="top: 0.1899em;">Nqq</sub>(m<sub style="top: 0.1899em;">CC </sub></p><p>)</p><p>-q<sub style="top: 0.1794em;">m1</sub><0 </p><p></p><ul style="display: flex;"><li style="flex:1">G<sub style="top: 0.19em;">Ndd</sub>(m<sub style="top: 0.19em;">EC</sub>) = G<sub style="top: 0.19em;">Nll</sub>(m<sub style="top: 0.19em;">LC</sub>) = G<sub style="top: 0.19em;">Nqq</sub>(m<sub style="top: 0.19em;">CC </sub></li><li style="flex:1">)</li></ul><p></p><p>.</p><p>)</p><p>q<sub style="top: 0.1894em;">m1</sub><0 <br>+</p><p>or </p><p>X9 <br>-8/3(b) G<sub style="top: 0.1799em;">Naa</sub>(m<sub style="top: 0.1799em;">CC </sub><br>-5 </p><p>)<br>G<sub style="top: 0.1799em;">Nqq</sub>(m<sub style="top: 0.1799em;">CC</sub>) > G<sub style="top: 0.1799em;">Nqq</sub>(m<sub style="top: 0.1799em;">LC</sub>) > G<sub style="top: 0.1799em;">Nqq</sub>(m<sub style="top: 0.1799em;">EC </sub></p><p>G<sub style="top: 0.18em;">Nll</sub>(m<sub style="top: 0.18em;">LC</sub>) > G<sub style="top: 0.18em;">Nll</sub>(m<sub style="top: 0.18em;">EC</sub>) F<sub style="top: 0.19em;">G </sub>F<sub style="top: 0.19em;">Gaa</sub>(m<sub style="top: 0.19em;">CC</sub>), <br>)</p><p></p><ul style="display: flex;"><li style="flex:1">c<sup style="top: -0.2304em;">2</sup>Dt </li><li style="flex:1">q<sub style="top: 0.1796em;">m1</sub>>0 </li></ul><p></p>
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages16 Page
-
File Size-