Trigonometric Functions (Memorandum № 3)

Trigonometric Functions (Memorandum № 3)

M.Eng. René Schwarz Master of Engineering in Computer Science and Communication Systems (M.Eng.) Bachelor of Engineering in Mechatronics, Industrial and Physics Technology (B.Eng.) Memorandum № 3 Trigonometric Functions Note: All angles in this paper are given in radians, unless otherwise stated. 1 Trigonometric functions and their definitions . Other (Image Credit: [3]) Function Abbreviation Geometric Description Identities ( ) opposite a π https://creativecommons.org/licenses/by-nc/4.0/ − Sine sin(α) sin α = hypothenuse = c sin α = cos α 2 ), unless otherwise stated. ( ) (α) α = adjacent = b α = α + π Cosine cos cos hypothenuse c cos sin 2 ( ) (α) α = opposite = a α = sin α = π − α = 1 Tangent tan tan adjacent b tan cos α cot ( 2 ) cot α (α) α = adjacent = b α = cos α = π − α = 1 Cotangent cot cot opposite a cot sin α( tan) 2 tan α (α) α = hypothenuse = c α = π − α = 1 Secant sec sec adjacent b sec csc ( 2 ) cos α rene-schwarz.com ( hypothenuse c π − 1 Cosecant csc(α) csc α = opposite = a csc α = sec 2 α = sin α René Schwarz 2 Shorthands Name Shorthand Name Shorthand This document is subjectLicense to (CC the conditions BY-NC 4.0), whichof the can Creative be Commons Attribution-NonCommercial examined at 4.0 International ©2017 M.Eng. licenses may apply for particular contents or supplemental documents/files. − half coversed sine (hacoversine) hacoversin α = 1 sin α versed sine (versine) versin α = 2 sin2 α = 1 − cos α 2 2 half coversed cosine (hacovercosine) hacovercosin α = 1+sin α versed cosine (vercosine) vercosin α = 2 cos2 α = 1 + cos α 2 2 exterior secant (exsecant) exsec α = sec α − 1 coversed sine (coversine) coversin α = 1 − sin α exterior cosecant (excosecant) excsc α = csc α − 1 coversed cosine (covercosine) covercosin α = 1 + sin α α 1−cos α chord crd α = 2 sin 2 half versed sine (haversine) haversin α = 2 sin(πα) cbn 1−sin α sinus cardinalis (cardinal sine) sinc α = πα (normalized) half versed cosine (havercosine) havercosin α = 2 sin α sinc α = α (unnormalized) 3 Important values of the basic trigonometric functions 1 1 1 1 2 3 5 7 5 4 3 5 7 11 0 6 π 4 π 3 π 2 π 3 π 4 π 6 π π 6 π 4 π 3 π 2 π 3 π 4 π 6 π 2π 0◦ 30◦ 45◦ 60◦ 90◦ 120◦ 135◦ 150◦ 180◦ 210◦ 225◦ 240◦ 270◦ 300◦ 315◦ 330◦ 360◦ p p p p p p p p sin α 0 1 2 3 1 3 2 1 0 − 1 − 2 − 3 −1 − 3 − 2 − 1 0 p2 p2 2 2 2p 2p p2 p2 2 2 p2 p2 cos α 1 3 2 1 0 − 1 − 2 − 3 −1 − 3 − 2 − 1 0 1 2 3 1 p2 2 p2 p2 2 p2 p2 2 p2 p2 2 2p tan α 0 3 1 3 ∞ − 3 −1 − 3 0 3 1 3 ∞ − 3 −1 − 3 0 p3 p p p3 p3 p p p3 ∞ 3 − 3 − − ∞ 3 − 3 − − ∞ cot α 3 1 3 0 3 1 3 3 1 3 0 3 1 3 Mnemonics for sine and cosine: 1 1 1 1 2 3 5 7 5 4 3 5 7 11 https://goo.gl/XB85LZ 0 6 π 4 π 3 π 2 π 3 π 4 π 6 π π 6 π 4 π 3 π 2 π 3 π 4 π 6 π 2π Errors, comments or ideas regarding! this paper? 0◦ 30◦ 45◦ 60◦ 90◦ 120◦ 135◦ 150◦ 180◦ 210◦ 225◦ 240◦ 270◦ 300◦ 315◦ 330◦ 360◦ p p p p p p p p p p p p p p p p p sin α 0 1 2 3 4 3 2 1 0 − 1 − 2 − 3 − 4 − 3 − 2 − 1 0 p2 p2 p2 p2 p2 2p 2p 2p 2p p2 p2 p2 p2 p2 p2 p2 p2 4 3 2 1 0 − 1 − 2 − 3 − 4 − 3 − 2 − 1 0 1 2 3 4 cos α 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 (Image Credit: [4]) Page 1 of 4 version: 2017/10/05 14:56 M.Eng. René Schwarz (rene-schwarz.com): Memorandum Series Trigonometric Functions (Memorandum № 3) 4 Pythagorean and related trigonometric identities cos2 α + sin2 α = 1 in terms of sin α cos α tan α cot α sec α csc α p (Pythagorean Identity, p tan α 1 sec2 α − 1 1 sin α = sin α 1 − cos2 α p p named after 1 + tan2 α 1 + cot2 α sec α p csc α Pythagoras of Samos p 1 cot α 1 csc2 α − 1 cos α = 1 − sin2 α cos α p p Ὁ Πυθαγόρας ὁ Σάμιος) 2 2 p 1 + tan α 1 + cot α sec α csc α sin α 1 − cos2 α 1 p 1 2 1 tan α = p tan α sec2 α − 1 p 1 + tan α = − 2 α α 2 − cos2 α p1 sin α cos cot csc α 1 1 − sin2 α cos α 1 1 p = sec2 α cot α = p cot α p csc2 α − 1 sin α 1 − cos2 α tan α p sec2 α − 1 1 1 1 p 1 + cot2 α csc α 1 + cot2 α = sec α = p 1 + tan2 α sec α p sin2 α 1 − sin2 α cos α p cot α csc2 α − 1 p 2 1 1 1 + tan2 α sec α = csc α csc α = p 1 + cot2 α p csc α sin α 1 − cos2 α tan α sec2 α − 1 5 Symmetry, shifts and periodicity Symmetry Shifts Periodicity (k 2 Z) − − π − − π · sin( α) = sin α x = 2 α π α α + 2 α + π α + 2π sin(α + k 2π) = sin α − cos(−α) = cos α sin x = cos α sin α cos α sin α sin α cos(α + k · 2π) = cos α cos x = sin α − cos α − sin α − cos α cos α tan(−α) = − tan α tan(α + k · π) = tan α tan x = cot α − tan α − cot α tan α tan α (−α) = − α · cot cot cot x = tan α − cot α − tan α cot α cot α cot(α + k π) = cot α sec(−α) = sec α sec x = csc α − sec α − csc α − sec α sec α sec(α + k · 2π) = sec α csc(−α) = − csc α csc x = sec α csc α sec α − csc α csc α csc(α + k · 2π) = csc α 6 Addition theorems, sum and difference identities of two functions α+β α−β sin(αβ) sin(α β) = sin α cos β cos α sin β sin α + sin β = 2 sin 2 cos 2 tan α tan β = cos α cos β ∓ − α+β α−β sin(αβ) cos(α β) = cos α cos β sin α sin β sin α sin β = 2 cos 2 sin 2 cot α cot β = sin α sin β tan αtan β α+β α−β cos(α−β) tan(α β) = 1∓tan α tan β cos α + cos β = 2 cos 2 cos 2 tan α + cot β = cos α sin β cot α cot β∓1 − − α+β α−β − cos(α+β) cot(α β) = cot βcot α cos α sin β = 2 sin 2 sin 2 cot α tan β = sin α cos β 7 Products of two functions 1 − − 1 − sin α sin β = 2 (cos(α β) cos(α + β)) sin α cos β = 2 (sin(α β) + sin(α + β)) 1 − − 1 − cos α sin β = 2 (sin(α β) sin(α + β)) cos α cos β = 2 (cos(α β) + cos(α + β)) 8 Power reduction formula Sine Cosine n−1 ( ) n−1 X2 − ( ) X2 ( ) 2 n 1 −k n 2 n n odd sinn α = (−1) 2 sin ((n − 2k)α) cosn α = cos ((n − 2k)α) 2n k 2n k k=0 k=0 n −1 n −1 ( ) 2X ( ) ( ) 2X ( ) n 1 n 2 n −k n n 1 n 2 n n even sin α = + (−1)( 2 ) cos ((n − 2k)α) cos α = + cos ((n − 2k)α) 2n n 2n k 2n n 2n k 2 k=0 2 k=0 1 − cos(2α) 3 sin α − sin(3α) cos(4α) − 4 cos(2α) + 3 sin2 α = sin3 α = sin4 α = 2 4 8 1 + cos(2α) cos(3α) + 3 cos α cos(4α) + 4 cos(2α) + 3 cos2 α = cos3 α = cos4 α = 2 4 8 Page 2 of 4 version: 2017/10/05 14:56 M.Eng. René Schwarz (rene-schwarz.com): Memorandum Series Trigonometric Functions (Memorandum № 3) 9 Multiple-angle formulæ Pn ( ) n k n−k π(n−k) tan(nθ)+tan θ sin(nθ) = k cos θ sin θ sin 2 tan((n + 1)θ) = 1−tan(nθ) tan θ k=0 Pn ( ) n k n−k π(n−k) cot(nθ) cot θ−1 cos(nθ) = k cos θ sin θ cos 2 cot((n + 1)θ) = cot(nθ)+cot θ k=0 sin x cos x tan x cot x 2 tan α 2 − 2 1−tan2 α 2 tan α cot2 α−1 x = 2α 2 sin α cos α = 1+tan2 α cos α sin α = 1+tan2 α 1−tan2 α 2 cot α − 3 3 − 3 tan α−tan3 α cot3 α−3 cot α x = 3α 3 sin α 4 sin α 4 cos α 3 cos α 1−3 tan2 α 3 cot2 α−1 3 − 4 − 2 4 tan α−4 tan3 α cot4 α−6 cot2 α+1 x = 4α 8 cos α sin α 4 cos α sin α 8 cos α 8 cos α + 1 1−6 tan2 α+tan4 α 4 cot3 α−4 cot α 10 Half-angle formulæ q q α 1 − α 1−cos α 1−cos α sin α − sin 2 = 2 (1 cos α) tan 2 = 1+cos α = sin α = 1+cos α = csc α cot α q q α 1 α 1+cos α 1+cos α sin α cos 2 = 2 (1 + cos α) cot 2 = 1−cos α = sin α = 1−cos α = csc α + cot α 11 Inverse trigonometric functions 11.1 Definition of the inverse trigonometric functions Trig.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    4 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us