Optical Properties of Refractory Metal Based Thin Films

Optical Properties of Refractory Metal Based Thin Films

Vol. 9, No. 8 | 1 Aug 2018 | OPTICAL MATERIALS EXPRESS 2072 Optical properties of refractory metal based thin films 1,2,* 1 1 ARCHAN BANERJEE, ROBERT M. HEATH, DMITRY MOROZOV, DILINI 1 1 1 HEMAKUMARA, UMBERTO NASTI, IAIN THAYNE, AND ROBERT H. 1 HADFIELD 1School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK 2Presently at: Centre for Quantum Photonics, University of Bristol, Bristol BS8 1TH, UK *[email protected] Abstract There is growing interest in refractory metal thin films for a range of emerging nanophotonic applications, including high temperature plasmonic structures and infrared superconducting single photon detectors. We present a detailed comparison of optical properties for key representative materials in this class (NbN, NbTiN, TiN and MoSi) with texture varying from crystalline to amorphous. NbN, NbTiN and MoSi have been grown in an ultra-high vacuum sputter deposition system on silicon substrates at room temperature. Two different techniques (sputtering and atomic layer deposition) have been employed to deposit TiN. We have carried out variable angle ellipsometric measurements of optical properties from ultraviolet to mid-infrared wavelengths. We compare with high resolution transmission electron microscopy analysis of microstructure. Sputter-deposited TiN and MoSi have shown the highest optical absorption in the infrared wavelengths relative to NbN, NbTiN and ALD- deposited TiN. We have also modelled the performance of a semi-infinite metal air interface as a plasmonic structure with the above mentioned refractory metal based thin films as the plasmonic components. This study has implications for the design of next-generation superconducting nanowire single photon detectors and plasmonic nanostructure-based devices. Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. OCIS codes: (160.4670) Optical materials; (310.6860) Thin films, optical properties; (120.4530) Optical constants; (250.5403) Plasmonics; (040.3060) Infrared detectors. References and links 1. T. E. Tietz and J. W. Wilson, Behavior and Properties of Refractory Metals (Stanford University Press, 1965). 2. M. Bauccio, ASM Metals Reference Book (ASM International, 1993). 3. E. Lassner and W.-D. Schubert, Tungsten : Properties, Chemistry, Technology of the Element, Alloys, and Chemical Compounds (Kluwer Academic/Plenum Publishers, 1999). 4. D. Cristea, I. Ghiuță, and D. Munteanu, “Tantalum based materials for implants and prosthesis applications,” Bull. Transilv. Univ. Braşov 857(2), (2015). 5. M. E. Packer and M. J. Murray, “A floating zone furnace for melting refractory metals and metal-like compounds,” J. Phys. Educ. 5(3), 246 (1972). 6. R. E. Smallwood, ASTM Committee B-10 on Reactive and Refractory Metals and Alloys, and L. Symposium on Refractory Metals and Their Industrial Applications, Refractory Metals and Their Industrial Applications: A Symposium (ASTM, 1984). 7. A. Boltasseva and H. A. Atwater, “Materials science. Low-loss plasmonic metamaterials,” Science 331(6015), 290–291 (2011). 8. A. Banerjee, L. J. Baker, A. Doye, M. Nord, R. M. Heath, K. Erotokritou, D. Bosworth, Z. H. Barber, I. MacLaren, and R. H. Hadfield, “Characterisation of amorphous molybdenum silicide (MoSi) superconducting thin films and nanowires,” Supercond. Sci. Technol. 30(8), 084010 (2017). 9. A. E. Lita, V. B. Verma, R. D. Horansky, J. M. Shainline, R. P. Mirin, and S. Nam, “Materials Development for High Efficiency Superconducting Nanowire Single-Photon Detectors,” MRS Proc. 1807, 1–6 (2015). 10. D. Bosworth, S.-L. Sahonta, R. H. Hadfield, and Z. H. Barber, “Amorphous molybdenum silicon superconducting thin films,” AIP Adv. 5(8), 087106 (2015). 11. D. M. O’Carroll, “Nanophotonics and plasmonics for solar energy harvesting and conversion,” J. Photonics Energy 5(1), 057001 (2015). #326346 https://doi.org/10.1364/OME.8.002072 Journal © 2018 Received 23 Mar 2018; revised 19 May 2018; accepted 21 Jun 2018; published 5 Jul 2018 Vol. 9, No. 8 | 1 Aug 2018 | OPTICAL MATERIALS EXPRESS 2073 12. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008). 13. A. Lalisse, G. Tessier, J. Plain, and G. Baffou, “Plasmonic efficiencies of nanoparticles made of metal nitrides (TiN, ZrN) compared with gold,” Sci. Rep. 6(1), 38647 (2016). 14. P. Patsalas, N. Kalfagiannis, and S. Kassavetis, “Optical properties and plasmonic performance of titanium nitride,” Materials (Basel) 8(12), 3128–3154 (2015). 15. W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959– 7965 (2014). 16. J. A. Briggs, G. V. Naik, Y. Zhao, T. A. Petach, K. Sahasrabuddhe, D. Goldhaber-Gordon, N. A. Melosh, and J. A. Dionne, “Temperature-dependent optical properties of titanium nitride,” Appl. Phys. Lett. 110(10), 101901 (2017). 17. J. Chen, J. B. Altepeter, M. Medic, K. F. Lee, B. Gokden, R. H. Hadfield, S. W. Nam, and P. Kumar, “Demonstration of a quantum controlled-NOT gate in the telecommunications band,” Phys. Rev. Lett. 100(13), 133603 (2008). 18. R. H. Hadfield, M. J. Stevens, R. P. Mirin, and S. W. Nam, “Single-photon source characterization with twin infrared-sensitive superconducting single-photon detectors,” J. Appl. Phys. 101(10), 103104 (2007). 19. J. Zhang, N. Boiadjieva, G. Chulkova, H. Deslandes, G. N. Gol’tsman, A. Korneev, P. Kouminov, M. Leibowitz, W. Lo, R. Malinsky, O. Okunev, A. Pearlman, W. Slysz, K. Smirnov, C. Tsao, A. Verevkin, B. Voronov, K. Wilsher, and R. Sobolewski, “Noninvasive CMOS circuit testing with NbN superconducting single-photon detectors,” Electron. Lett. 39(14), 1086 (2003). 20. C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Technol. 25(6), 063001 (2012). 21. G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001). 22. S. Miki, T. Yamashita, H. Terai, and Z. Wang, “High performance fiber-coupled NbTiN superconducting nanowire single photon detectors with Gifford-McMahon cryocooler,” Opt. Express 21(8), 10208–10214 (2013). 23. F. Marsili, D. Bitauld, A. Fiore, A. Gaggero, F. Mattioli, R. Leoni, M. Benkahoul, and F. Lévy, “High efficiency NbN nanowire superconducting single photon detectors fabricated on MgO substrates from a low temperature process,” Opt. Express 16(5), 3191–3196 (2008). 24. J. Bardeen, L. N. Cooper, and J. R. Schrieffer, “Theory of superconductivity,” Phys. Rev. 108(5), 1175–1204 (1957). 25. M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015). 26. J. Li, R. A. Kirkwood, L. J. Baker, D. Bosworth, K. Erotokritou, A. Banerjee, R. M. Heath, C. M. Natarajan, Z. H. Barber, M. Sorel, and R. H. Hadfield, “Nano-optical single-photon response mapping of waveguide integrated molybdenum silicide (MoSi) superconducting nanowires,” Opt. Express 24(13), 13931–13938 (2016). 27. R. M. Heath, M. G. Tanner, T. D. Drysdale, S. Miki, V. Giannini, S. A. Maier, and R. H. Hadfield, “Nanoantenna enhancement for telecom-wavelength superconducting single photon detectors,” Nano Lett. 15(2), 819–822 (2015). 28. W. M. Haynes, CRC Handbook of Chemistry and Physics : A Ready-Reference Book of Chemical and Physical Data, 92nd ed. (CRC Press, 2011). 29. M. E. Straumanis and S. Zyszczynski, “Lattice parameters, thermal expansion coefficients and densities of Nb, and of solid solutions Nb–O and Nb–N–O and their defect structure,” J. Appl. Cryst. 3(1), 1–6 (1970). 30. C. M. Perlov and C. Y. Fong, “Calculation of the superconducting transition temperature in niobium,” Phys. Rev. B 29(3), 1243–1249 (1984). 31. P. Ettmayer, R. Kieffer, and F. Hattinger, “Determination of melting points of metal nitrides under nitrogen pressure,” Metall 28(12), 1151–1156 (1974). 32. G. Zou, M. Jain, H. Zhou, H. Luo, S. A. Baily, L. Civale, E. Bauer, T. M. McCleskey, A. K. Burrell, and Q. Jia, “Ultrathin epitaxial superconducting niobium nitride films grown by a chemical solution technique,” Chem. Commun. (Camb.) 44(45), 6022–6024 (2008). 33. R. G. Ross and W. Hume-Rothery, “High temperature X-ray metallography: I. A new debye-scherrer camera for use at very high temperatures II. A new parafocusing camera III. Applications to the study of chromium, hafnium, molybdenum, rhodium, ruthenium and tungsten,” J. Less Common Met. 5(3), 258–270 (1963). 34. I. G. D ’yakov and A. D. Shvets, “Investigation of superconducting properties of molybdenum,” Sov. Phys. 22(49), 1091–1093 (1966). 35. A. Misra, J. J. Petrovic, and T. E. Mitchell, “Microstructures and mechanical properties of a Mo3Si-Mo5Si3 composite,” Scr. Mater. 40(2), 191–196 (1998). 36. R. R. Pawar and V. T. Deshpande, “The anisotropy of the thermal expansion of α-titanium,” Acta Crystallogr. A 24(2), 316–317 (1968). 37. M. C. Steele and R. A. Hein, “Superconductivity of Titanium,” Phys. Rev. 92(2), 243–247 (1953). 38. H. O. Pierson, Handbook of Refractory Carbides and Nitrides : Properties, Characteristics, Processing, and Applications (Noyes Publications, 1996). Vol. 9, No. 8 | 1 Aug 2018 | OPTICAL MATERIALS EXPRESS 2074 39. M. Marlo and V. Milman, “Density-functional study of bulk and surface properties of titanium nitride using different exchange-correlation functionals,” Phys. Rev. B 62(4), 2899–2907 (2000). 40. W. Spengler, R. Kaiser, A. N. Christensen, and G. Müller-Vogt, “Raman scattering, superconductivity, and phonon density of states of stoichiometric and nonstoichiometric TiN,” Phys.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    17 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us