Inertial Confinement Fusion

Inertial Confinement Fusion

UC San Diego UC San Diego Electronic Theses and Dissertations Title Convective heating analysis of an IFE target in a high temperature, low Reynolds number xenon environment Permalink https://escholarship.org/uc/item/25x6g578 Author Holdener, Dain Steffen Publication Date 2011 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, SAN DIEGO Convective Heating Analysis of an IFE Target in a High Temperature, Low Reynolds Number Xenon Environment A Thesis submitted in partial satisfaction of the requirements For the degree of Master of Science in Engineering Sciences (Mechanical Engineering) by Dain Steffen Holdener Committee in charge: Professor Mark Tillack, Chair Professor Yousef Bahadori Professor Farrokh Najmabadi Professor George Tynan 2011 Copyright Dain Steffen Holdener, 2011 All rights reserved. The Thesis of Dain Steffen Holdener is approved and it is acceptable in quality and form for publication on microfilm and electronically: Chair University of California, San Diego 2011 iii DEDICATION I would like to dedicate this work to my friends and loved ones who have supported me throughout my academic studies. To my parents, who instilled in me the value of hard work, honesty and integrity, I will forever be grateful. Above all, I would like to dedicate this work to Christ, my rock and Savior. I pray that You continue to bless me in my life and career so that I can continue to honor Your name. iv TABLE OF CONTENTS Signature Page ................................................................................................................. iii Dedication........................................................................................................................ iv Table of Contents............................................................................................................. v List of Figures.................................................................................................................. vii List of Tables ................................................................................................................... x Acknowledgements.......................................................................................................... xi Abstract............................................................................................................................ xiii Chapter 1: Introduction.................................................................................................... 1 Chapter 2: Inertial Confinement Fusion .......................................................................... 6 2.1: Fusion Basics...................................................................................................... 6 2.2: Inertial Confinement Fusion............................................................................... 8 2.3: The National Ignition Facility and the National Ignition Campaign.................. 8 2.4: The Laser Inertial Fusion Energy (LIFE) Engine............................................... 11 2.5: Previous Work .................................................................................................... 13 References.................................................................................................................. 16 Chapter 3: Modeling Techniques..................................................................................... 19 3.1: Flow Description and Modeling Challenges ...................................................... 19 3.2: Requirements for a Molecular Description......................................................... 22 3.3: Literature Review of Applicable Heating Correlations ...................................... 24 3.4: Direct Simulation Monte Carlo and DS2V......................................................... 32 3.5: Computational Fluid Dynamics, ANSYS and COMSOL .................................. 37 References.................................................................................................................. 45 Chapter 4: Results and Evaluation................................................................................... 47 4.1: Heat Transfer Correlations.................................................................................. 47 4.2: Convective Heating of LIFE Targets.................................................................. 54 4.2.1: Flow Field Profiles..................................................................................... 54 4.2.2: Flow Properties along Stagnation Line...................................................... 61 4.2.3: Local Heat Flux along Hohlraum Bodies.................................................. 67 4.2.4: Local Heat Transfer Coefficients as a Function of Wall Temperature ............................................................................................. 70 4.2.5: Hohlraum Shaping..................................................................................... 74 4.2.6: Accuracy Discussion of DS2V and ANSYS Results ................................ 75 4.3: Transient Thermo Mechanical Behavior of Target............................................. 77 v 4.3.1: Developing Helium Flow Field Internal to Target .................................... 77 4.3.2: Adiabatic/Insulated LEH Window Heating............................................... 79 4.3.3: LEH Window Heating with Insulated Walls and Internal Spinning Hohlraum ................................................................................................. 82 References .................................................................................................................. 91 Chapter 5: Conclusions and Recommendations .............................................................. 93 Appendix A: Xenon Transport Properties ....................................................................... 97 A.1: Xenon Phase Diagram........................................................................................ 97 A.2: Estimated Transport Properties from the Lennard-Jones Potential ................... 99 A.3: Ionization Using the Saha Equation...................................................................103 References..................................................................................................................108 vi LIST OF FIGURES Figure 2.1: Lawson Criterion Bounds for DT and DD Fusion ........................................ 7 Figure 2.2: Cutaway of the National Ignition Facility, NIF ............................................ 9 Figure 2.3: Implosion Symmetry of NIF Target.............................................................. 10 Figure 2.4: Hohlraum Schematics; Old NIF-like Left, New LIFE.2 Hohlraum Right ...................................................................................................... 13 Figure 3.1: The Knudsen Number Limits on the Mathematic Models............................ 23 Figure 3.2: DS2V Domain Schematic ............................................................................. 34 Figure 3.3: ANSYS Domain Schematic .......................................................................... 39 Figure 3.4: COMSOL Domain Schematic....................................................................... 42 Figure 4.1: Heat Transfer Scaling vs. Wall Temperature ................................................ 52 Figure 4.2: Heat Transfer Scaling vs. Chamber Gas Temperature.................................. 53 Figure 4.3.a: Old TFC, Temperature Flow Field; Normalized: 150-1108 K................... 55 Figure 4.3.b: Old TFC, Velocity Flow Field; Normalized: 0-238 m/s ............................ 56 Figure 4.3.c: Old TFC, Pressure Flow Field; Normalized: 134-381 Pa .......................... 56 Figure 4.4.a: New TFC, Temperature Flow Field; T w = 2000 K, Normalized 2000-8137 K ....................................................................................... 58 Figure 4.4.b: New TFC, Velocity Flow Field; T w = 2000 K, Normalized: 0-275 m/s ........................................................................................... 58 Figure 4.4.c: New TFC, Pressure Flow Field; T w = 2000 K, Normalized: 2049-3264 Pa..................................................................................... 59 Figure 4.5.a: Old TFC, Temperature along Stagnation Line ........................................... 61 Figure 4.5.b: Old TFC, Velocity along Stagnation Line.................................................. 62 Figure 4.5.c: Old TFC, Pressure along Stagnation Line.................................................. 62 Figure 4.5.d: Old TFC, Density along Stagnation Line................................................... 62 vii Figure 4.6.a: New TFC, Temperature along Stagnation Line; T w = 2000 K................... 63 Figure 4.6.b: New TFC, Velocity along Stagnation Line; T w = 2000 K ......................... 63 Figure 4.6.c: New TFC, Pressure along Stagnation Line; T w = 2000 K.......................... 63 Figure 4.6.d: New TFC, Density along Stagnation Line; T w = 2000 K........................... 64 Figure 4.7: Old TFC, Local Knudsen Number along Stagnation Line............................ 66 Figure 4.8: Old TFC, Heat Flux along Spherical Target; T ref = 1000 K, Tw = 150 K.............................................................................................................. 67 Figure 4.9: Old TFC, Heat Flux along NIF-like Hohlraum; T ref = 1000 K, Tw = 150 K.............................................................................................................

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    124 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us