Télécom Bretagne
Total Page:16
File Type:pdf, Size:1020Kb
N° d'ordre : 2016telb0389 Sous le sceau de l' Université Bretagne Loire Télécom Bretagne En accréditation conjointe avec l'Ecole Doctorale Sicma Impact of 3D technologies and environment stimuli on stereo vision perception Thèse de Doctorat Mention : Sciences et Technologies Information Communication Présentée par Di ZHANG Département : Optique Directeur de thèse : Jean-Louis de Bougrenet de la Tocnaye Soutenue le 13 janvier 2016 Jury : M. Pascal Mamassian, Directeur de Recherche, Ecole Normale Supérieure (Rapporteur) Mme Emma Gowen, Senior Lecturer, Université de Manchester (Rapporteur) M. Jean-Louis de Bougrenet de la Tocnaye, Professeur, Télécom Bretagne (Directeur de thèse) Mme Béatrice Cochener, Professeur, CHRU Brest (Examinateur) M Xinzhu Sang, Professeur, BUPT Pékin, (Examinateur) M. Christian Roux, Professeur, Institut Mines Télécom (Examinateur) 1 Acknowledgements I have been thinking about the acknowledgements since I just started to write the dissertation. The PhD thesis is not only a research project, it is also my three years life. Every chapter I have written, there are stories and experience in it, with the people who were working with me or who had offered their disinterested help to me. My first and the deepest gratitude belongs to my supervisor Professor Jean-Louis De Bougrenet De La Tocnaye, for the continuous guidance and support of my study and research, for his patience, encouragement, trust and immense knowledge. The characteristic I appreciate the most is his inspiration, it has been always a great pleasure to discuss with him, each time I feel better understanding for my research field and gain more confidence. My sincere thanks also goes to my team members, specifically for Miss Yulia Fattakhova, Dr. Pascaline Neveu, Miss Stephanie Ferragut, Mr Luay Ahdab, Dr Vincent Nourrit. They have given me immense help when I just entered this new research field, they explained me the basic knowledge with great patience and made so much effort when I carried out my experiments. I am so grateful for my lovely colleagues in Optics department, every time I need voluntary guinea pigs and ask for your participations, I have never gotten a refusal. Suman, Stephen, Barbara, Ion, Maina, Samir, thank you for all your beautiful eyes and precious suggestions for my experiments! For our best secretary Miss Jennifer Romer, if I have to show my gratitude for your help and friendship in one short sentence, it will be: thank you for being one of the warmest parts in my France life. I would like to express my thankful for my thesis reviewers Dr Emma Gowen-Senior lecture at Manchester University and Professor Pascal Mamassian – director of Laboratoire des Systèmes Perceptifs (UMR 8248 CNRS/ENS), I would not be able to finish my dissertation without your patience in correcting my thesis. I would like to thank Professor Sang Xinzhu from Beijing University of Posts and Telecommunications, for your recommendation of my PhD thesis and help during my stay at Beijing. Last but not least, I appreciate the help and valuable discussions from professors, researchers and students at Telecom Bretagne, Manchester University, Beijing University of Posts and Telecommunications. I also thank my family and friends for their consistent support and encouragement during my study. I Abstract Comfort viewing experience has been a permanent goal in stereoscopic research due to the development of 3D technologies. However, various parameters affect stereo vision perception. In this thesis, a series of physiological experiments have been carried out aiming at evaluating the 3D visual perception with respect to 3 of the most important factors: 3D display technology, viewing environments and motion-in-depth (MID) perception. First we measured vertical fusion amplitude (VFA) on 3D projectors and an autostereoscopic TV. VFA was chosen as an indicator for visual comfort due to our strong sensitivity to vertical disparity. Several factors have been tested (e.g. viewing distance, background luminance, crosstalk, viewing angle etc.). We compared observer performance on both 3D displays and concluded the tolerance for vertical disparity was better on 3D projector than on autostereoscopic TV. For the environment effect, we measured VFA on a 3D projector by varying the room lighting, 3D content complexity, disparity velocity. We assessed the interaction between central and peripheral fusion, by introducing a series of base-up prisms in front of one eye. We observed that the fusion balance of central and peripheral vision was broken when large peripheral disparities (>4 prism diopter) or stimulus sizes (central stimulus angle < 15°) were induced on the peripheral vision. Finally, we investigated the interaction between sensorial and oculomotor system for MID stimulation. Preliminary results indicated that the motion aftereffect generated by sensorial cue stimulus could be partially mitigated by oculomotor cue and that MID perception performance could be improved by specific trainings. We identified some critical factors for 3D content generation to enhance the MID perception, such as background texture, fixation object dot life time. II Résumé Le confort de visualisation a été un objectif permanent dans la recherche stéréoscopique en raison du développement des technologies 3D. Cependant, divers paramètres affectent la perception de la vision stéréo. Dans cette thèse, une série d'expériences physiologiques ont été menées visant à évaluer la perception visuelle 3D par rapport à 3 des facteurs les plus importants: la technologie d'affichage 3D, les environnements de visualisation et de mouvement en profondeur (MID). Nous avons d'abord mesuré l'amplitude de fusion verticale (VFA) sur les projecteurs 3D et une télévision autostéréoscopique. Le VFA a été choisi comme un indicateur pour le confort visuel en raison de notre forte sensibilité à la disparité verticale. Plusieurs facteurs ont été testés (e.g. distance d'observation, la luminance du fond, la diaphonie, l’angle de vue, etc.). Nous avons comparé les performances d'observateur sur les deux écrans 3D et conclu que la tolérance pour la disparité verticale était meilleure sur le projecteur 3D que sur la télévision autostéréoscopique. Pour l'impact de l'environnement sur la perception stéréo, nous avons mesuré le VFA sur un projecteur 3D en fonction de l'éclairage de la pièce, de la complexité du contenu 3D, de la vitesse de disparité. Nous avons évalué l'interaction entre la fusion centrale et périphérique, en introduisant une série de prismes en face d'un œil. Nous avons observé que l'équilibre de la fusion entre vision centrale et périphérique était rompu quand de grandes disparités périphériques (> 4 dioptries prismatiques) ou tailles de stimuli (angle central du stimulus < 15 °) étaient induites sur la vision périphérique. Enfin, nous avons étudié l'interaction entre le système sensoriel et oculomoteur en stimulation MID. Les premiers résultats indiquent que les post-effets générés par stimulation sensorielle pouvaient être partiellement atténués par des stimulations oculomotrices. Nous avons en outre identifié certains facteurs critiques pour la génération de contenu 3D pour améliorer la perception MID, comme la texture de fond, le temps de fixation objet et la durée de vie des random dots. III Contents Acknowledgement ……………………………………………………………………………………………… IV Abstract ……………………………………………………………………………………………………………… II Résumé ………………………………………………………………………………………………………………. III List of figures ………………………………………………………………………………………………………. IV List of tables …..…………………………………………………………………………………………………… IV Abbreviations ………………………………………………………………………………………………………. IV General introduction …………………………………………………………………………………………………… 1 1. Chapter 1 Introduction …………………………………………………………………………………….. 6 1.1. The eye & How we see……………………………………………………………………………….. 8 1.2. Binocular vision………………………………………………………………………………………….. 12 1.3. Oculomotor function………………………………………………………………………………….. 18 1.4. Sensory function ……………………………………………………………………………………….. 22 1.5. 3D perception stimulation cues…………………………………………………………………… 32 1.6. 3D display technologies………………………………………………………………………………. 32 1.7. Conclusion …………………………………………………………………………………………………. 38 2. Chapter 2 3D display technology effect on visual perception…………………………….. 40 2.1. Introduction…………………………………………………………………………………………… 42 2.2. Methods………………………………………………………………………………………………… 44 2.3. Procedures…………………………………………………………………………………………….. 49 2.4. Results and discussions…………………………………………………………………………… 55 2.5. Conclusions …………………………………………………………………………………………… 61 3. Chapter 3 Environmental parameters impact on visual perception of 3D stereo objects……………………………………………………………………………………………………………… 64 3.1. Introduction………………………………………………………………………………………….. 66 3.2. Methods……………………………………………………………………………………………….. 68 3.3. Procedures……………………………………………………………………………………………. 72 3.4. Results and discussions………………………………………………………………………….. 75 3.5. Conclusions…………………………………………………………………………………………… 85 4. Chapter 4 Motion-in-depth perception…………………………………………………………….. 86 4.1. Introduction …………………………………………………………………………………………. 88 4.2. Apparatus and subjects………………………………………………………………………….. 93 4.3. Investigation on sensory and oculomotor system interaction in motion-in-depth perception……………………………………………………………………………………………………….. 95 IV 4.4. Corrected experiments for sensory and oculomotor system interaction investigation in motion-in-depth perception ……………………………………………………. 106 4.5. Motion-in-depth perception training……………………………………………………… 108 4.6. How to design motion-in-depth