The Role of Diversification in Community Assembly of the Oaks (Quercus L.) Across the Continental U.S

Total Page:16

File Type:pdf, Size:1020Kb

The Role of Diversification in Community Assembly of the Oaks (Quercus L.) Across the Continental U.S RESEARCH ARTICLE INVITED SPECIAL ARTICLE For the Special Issue: Using and Navigating the Plant Tree of Life The role of diversification in community assembly of the oaks (Quercus L.) across the continental U.S. Jeannine Cavender-Bares1,7, Shan Kothari2,7, José Eduardo Meireles1,7, Matthew A. Kaproth1,4, Paul S Manos3, and Andrew L. Hipp5,6 Manuscript received 4 July 2017; revision accepted 20 December PREMISE OF THE STUDY: Evolutionary and biogeographic history, including past environmental 2017. change and diversification processes, are likely to have influenced the expansion, migration, 1 Department of Ecology, Evolution and Behavior, University of and extinction of populations, creating evolutionary legacy effects that influence regional Minnesota, 1479 Gortner Avenue, St. Paul, MN 55108, USA species pools and the composition of communities. We consider the consequences of 2 Department of Plant Biology, University of Minnesota, 1479 the diversification process in shaping trait evolution and assembly of oak-dominated Gortner Ave, St. Paul, MN 55108, USA communities throughout the continental United States (U.S.). 3 Department of Biology, Duke University, Durham, NC 27708, USA METHODS: Within the U.S. oaks, we tested for phylogenetic and functional trait patterns at 4 Department of Biological Sciences, Minnesota State University, different spatial scales, taking advantage of a dated phylogenomic analysis of American oaks Mankato, MN 56001, USA and the U.S. Forest Service (USFS) Forest Inventory and Analysis (FIA). 5 The Morton Arboretum, 4100 Illinois Route 53, Lisle, IL 60532, USA KEY RESULTS: We find (1) phylogenetic overdispersion at small grain sizes throughout the 6 The Field Museum, 1400 S Lake Shore Drive, Chicago, IL 60605, U.S. across all spatial extents and (2) a shift from overdispersion to clustering with increasing USA grain sizes. Leaf traits have evolved in a convergent manner, and these traits are clustered in 7 Authors for correspondence (e-mails: [email protected], communities at all spatial scales, except in the far west, where species with contrasting leaf [email protected], [email protected]) types co- occur. Citation: Cavender-Bares, J., S. Kothari, J. E. Meireles, M. A. Kaproth, P. S Manos, and A. L. Hipp. 2018. The role of diversification CONCLUSIONS: Our results support the hypotheses that (1) interspecific interactions were in community assembly of the oaks (Quercus L.) across the continen- important in parallel adaptive radiation of the genus into a range of habitats across the tal U.S. American Journal of Botany 105(3): 565–586. continent and (2) that the diversification process is a critical driver of community assembly. doi:10.1002/ajb2.1049 Functional convergence of complementary species from distinct clades adapted to the same local habitats is a likely mechanism that allows distantly related species to coexist. Our findings contribute to an explanation of the long- term maintenance of high oak diversity and the dominance of the oak genus in North America. KEY WORDS community assembly; complementarity; convergent evolution; diversification processes; environmental sorting; evolutionary legacy effects; functional traits; phylogenetic structure; species interactions; sympatric parallel adaptive radiation. The integration of phylogenetic biology and functional ecology into to ecosystem restoration in the face of widespread anthropogenic the study of biological communities has helped in deciphering the disturbance (Cavender- Bares and Cavender, 2011; Hipp et al., processes that shape community assembly (Webb et al., 2002; Kraft 2015; Barak et al., 2016). While competitive interactions and en- et al., 2007; Vamosi and Vamosi, 2007; Cavender- Bares et al., 2009; vironmental sorting processes have been highlighted as critical to Kraft and Ackerly, 2010; Eaton et al., 2012; Hawkins et al., 2014). local community assembly (Weiher and Keddy, 1999a; Webb et al., These advances are critical to understanding the predictability of 2002), diversification and long- term evolutionary and biogeo- ecosystem composition under global change and highly relevant graphic processes remain underappreciated in understanding local American Journal of Botany 105(3): 565–586, 2018; http://www.wileyonlinelibrary.com/journal/AJB © 2018 Botanical Society of America • 565 566 • American Journal of Botany community assembly (Gerhold et al., 2015). The role of historical resource- conservative trait values are advantageous in resource- processes in the assembly of plant communities remain understud- limited environments (Chabot and Hicks, 1982; Kikuzawa, 1995; ied, despite the known importance of adaptive radiation and histor- Reich, 2014). Furthermore, biotic interactions involving facilitation ical colonization patterns in the assembly of island and continental are frequently overlooked in hypothesized consequences of species floras (Pennington et al., 2004, 2009; Ricklefs, 2004; Emerson and interactions for community structure (Valiente- Banuet and Verdú, Gillespie, 2008; Crisp et al., 2009; Fine, 2015). Here we examine 2007). While phylogenetic overdispersion is frequently attributed the functional and phylogenetic structure of oak- dominated tree to competitive exclusion or other density-dependent processes un- communities from local to continental scales to examine the con- der the umbrella of biotic interactions, both empirical and simu- sequences of evolutionary and historical processes in shaping the lation studies have shown that it can be caused by habitat sorting composition and diversity of North American oak forest communi- processes and environmental filtering if critical functional traits ties. Our goal is to link deep- time processes to current patterns in that influence distributions are convergent (Cavender- Bares et al., an effort to understand why the oaks have unusually high local and 2004b; Kraft et al., 2007). Understanding why traits may be conver- continental diversity and abundance. gent ultimately requires knowledge of diversification. The phylogenetic structure of co- occurrence patterns is a cu- The processes that dominate community assembly vary with mulative consequence of historical processes, such as speciation, spatial scale (Weiher and Keddy, 1999b; Laliberté et al., 2009) and extinction, and dispersal (Kembel, 2009; Villalobos et al., 2013), thus lead to shifting expectations of phylogenetic and trait structure ecological interactions and genetic processes, such as disease in communities (Cavender- Bares et al., 2006; Swenson et al., 2006, (Gilbert and Webb, 2007) and pest (Mouillot et al., 2005; Lind 2007; Willis et al., 2010; Brunbjerg et al., 2014; Yan et al., 2016). et al., 2015) dynamics, introgression (Eaton et al., 2015; Pollock Grain size and spatial extent are two distinct but important compo- et al., 2015), competition (Davies et al., 2007; Cooper et al., 2008), nents of spatial scale (Turner et al., 2001) that are expected to have facilitation (Valiente- Banuet and Verdú, 2007), and environmental different consequences for community structure. A community as- sorting (Helmus, 2007; Savage and Cavender-Bares, 2012; Swenson semblage is defined by the grain size (i.e., the plot size of an observed et al., 2012) (Box 1). Over long timescales, ecological processes and assemblage) that we choose, while comparisons among assemblages introgression surely influence evolutionary dynamics and diversi- and the pool of species that we assume those assemblages are de- fication, shaping the radiations of important lineages and their on- rived from depend on the spatial extent that we circumscribe for going community assembly processes (Van Valen, 1976; Schluter, the analysis. At small grain sizes, our focal species can be assumed 2000; Ricklefs, 2007; Tyerman et al., 2008; Givnish et al., 2009; to interact (or potentially interact) directly, and environmental con- Keller et al., 2013; Cannon and Lerdau, 2015). Historical diversi- ditions may be relatively homogeneous, whereas at increasing grain fication processes have also influenced the evolution of functional sizes individuals within the assemblage would be less likely to inter- traits, thus influencing the extent to which closely related species act directly, although environmental variation may increase among are adapted to similar or contrasting habitats. At shorter times- assemblages, depending on the scale of variation of the most critical cales, density- dependent ecological processes and environmental environment axis. Keddy and Weiher (1999) thus hypothesized that selection pressures drive the co- occurrence patterns and sorting of biotic interactions should have greater importance at smaller spatial species into habitats. Yet the functional traits of organisms that are scales, whereas environmental adversity should influence assembly mechanistically linked to these processes reflect their longer-term more strongly at larger spatial scales. evolutionary history. Phylogenetic similarity can be used proximally as an integrated A persistent challenge is to tease apart the influence of multi- measure of functional similarity and can stand in for unmeasured ple processes interacting in complex ways to shape the structure of traits (Cadotte et al., 2009, 2011). Phylogenetic similarity is com- species assemblages (Lessard et al., 2015), given that there are more pellingly linked to similarity in susceptibility to disease (Webb potential processes that may account for the structure of species as- et al., 2006; Gilbert and Webb, 2007) and
Recommended publications
  • Department of Planning and Zoning
    Department of Planning and Zoning Subject: Howard County Landscape Manual Updates: Recommended Street Tree List (Appendix B) and Recommended Plant List (Appendix C) - Effective July 1, 2010 To: DLD Review Staff Homebuilders Committee From: Kent Sheubrooks, Acting Chief Division of Land Development Date: July 1, 2010 Purpose: The purpose of this policy memorandum is to update the Recommended Plant Lists presently contained in the Landscape Manual. The plant lists were created for the first edition of the Manual in 1993 before information was available about invasive qualities of certain recommended plants contained in those lists (Norway Maple, Bradford Pear, etc.). Additionally, diseases and pests have made some other plants undesirable (Ash, Austrian Pine, etc.). The Howard County General Plan 2000 and subsequent environmental and community planning publications such as the Route 1 and Route 40 Manuals and the Green Neighborhood Design Guidelines have promoted the desirability of using native plants in landscape plantings. Therefore, this policy seeks to update the Recommended Plant Lists by identifying invasive plant species and disease or pest ridden plants for their removal and prohibition from further planting in Howard County and to add other available native plants which have desirable characteristics for street tree or general landscape use for inclusion on the Recommended Plant Lists. Please note that a comprehensive review of the street tree and landscape tree lists were conducted for the purpose of this update, however, only
    [Show full text]
  • Oak Diversity and Ecology on the Island of Martha's Vineyard
    Oak Diversity and Ecology on the Island of Martha’s Vineyard Timothy M. Boland, Executive Director, The Polly Hill Arboretum, West Tisbury, MA 02575 USA Martha’s Vineyard is many things: a place of magical beauty, a historical landscape, an environmental habitat, a summer vacation spot, a year-round home. The island has witnessed wide-scale deforestation several times since its settlement by Europeans in 1602; yet, remarkably, existing habitats rich in biodiversity speak to the resiliency of nature. In fact, despite repeated disturbances, both anthropogenic and natural (hurricanes and fire), the island supports the rarest ecosystem (sand plain) found in Massachusetts (Barbour, H., Simmons, T, Swain, P, and Woolsey, H. 1998). In particular, the scrub oak (Quercus ilicifolia Wangenh.) dominates frost bottoms and outwash plains sustaining globally rare lepidopteron species, and formerly supported the existence of an extinct ground-dwelling bird, a lesson for future generations on the importance of habitat preservation. European Settlement and Early Land Transformation In 1602 the British merchant sailor Bartholomew Gosnold arrived in North America having made the six-week boat journey from Falmouth, England. Landing on the nearby mainland the crew found abundant codfish and Gosnold named the land Cape Cod. Further exploration of the chain of nearby islands immediately southwest of Cape Cod included a brief stopover on Cuttyhunk Island, also named by Gosnold. The principle mission was to map and explore the region and it included a dedicated effort to procure the roots of sassafras (Sassafras albidum (Nutt.) Nees) which were believed at the time to be medicinally valuable (Banks, 1917).
    [Show full text]
  • Morphometric Leaf Variation in Oaks (Quercus) of Bolu, Turkey
    Ann. Bot. Fennici 40: 233–242 ISSN 0003-3847 Helsinki 29 August 2003 © Finnish Zoological and Botanical Publishing Board 2003 Morphometric leaf variation in oaks (Quercus) of Bolu, Turkey Aydın Borazan & Mehmet T. Babaç Department of Biology, Abant |zzet Baysal University, Gölköy 14280 Bolu, Turkey (e-mail: [email protected], [email protected]) Received 16 Sep. 2002, revised version received 7 Jan. 2003, accepted 10 Jan. 2003 Borazan, A. & Babaç, M. T. 2003: Morphometric leaf variation in oaks (Quercus) of Bolu, Turkey. — Ann. Bot. Fennici 40: 233–242. Genus Quercus (Fagaceae) has a problematic taxonomy because of widespread hybridization between the infrageneric taxa. The pattern of morphological leaf varia- tion was evaluated for evidence of hybridization in Bolu, Turkey, since previous stud- ies suggested that in oaks leaf morphology is a good indicator of putative hybridiza- tion. Principal components analysis was applied to data sets of leaf characters from fi ve populations to describe variation in leaf morphology. Leaf characters analyzed in this study showed high degrees of variation as a result of hybridization between four taxa (Q. pubescens, Q. virgiliana, Q. petraea and Q. robur) of subgenus Quercus while Q. cerris as a member of subgenus Cerris was clearly separated from the others. Key words: hybridization, morphological leaf variation, principal components analy- sis, Quercus Introduction in regions of mild and warm temperate climates. Fossil leaves indicate that todayʼs several major In the northern hemisphere oaks (Quercus) are oak groups are at least 40 million years old. Gen- conspicuous members of the temperate decidu- eral distribution of fossil ancestors supports the ous, broad leaved forests.
    [Show full text]
  • Annotated Check List and Host Index Arizona Wood
    Annotated Check List and Host Index for Arizona Wood-Rotting Fungi Item Type text; Book Authors Gilbertson, R. L.; Martin, K. J.; Lindsey, J. P. Publisher College of Agriculture, University of Arizona (Tucson, AZ) Rights Copyright © Arizona Board of Regents. The University of Arizona. Download date 28/09/2021 02:18:59 Link to Item http://hdl.handle.net/10150/602154 Annotated Check List and Host Index for Arizona Wood - Rotting Fungi Technical Bulletin 209 Agricultural Experiment Station The University of Arizona Tucson AÏfJ\fOTA TED CHECK LI5T aid HOST INDEX ford ARIZONA WOOD- ROTTlNg FUNGI /. L. GILßERTSON K.T IyIARTiN Z J. P, LINDSEY3 PRDFE550I of PLANT PATHOLOgY 2GRADUATE ASSISTANT in I?ESEARCI-4 36FZADAATE A5 S /STANT'" TEACHING Z z l'9 FR5 1974- INTRODUCTION flora similar to that of the Gulf Coast and the southeastern United States is found. Here the major tree species include hardwoods such as Arizona is characterized by a wide variety of Arizona sycamore, Arizona black walnut, oaks, ecological zones from Sonoran Desert to alpine velvet ash, Fremont cottonwood, willows, and tundra. This environmental diversity has resulted mesquite. Some conifers, including Chihuahua pine, in a rich flora of woody plants in the state. De- Apache pine, pinyons, junipers, and Arizona cypress tailed accounts of the vegetation of Arizona have also occur in association with these hardwoods. appeared in a number of publications, including Arizona fungi typical of the southeastern flora those of Benson and Darrow (1954), Nichol (1952), include Fomitopsis ulmaria, Donkia pulcherrima, Kearney and Peebles (1969), Shreve and Wiggins Tyromyces palustris, Lopharia crassa, Inonotus (1964), Lowe (1972), and Hastings et al.
    [Show full text]
  • Scientific Name Species Common Name Abies Lasiocarpa FIR Subalpine Acacia Macracantha ACACIA Long-Spine
    Scientific Name Species Common Name Abies lasiocarpa FIR Subalpine Acacia macracantha ACACIA Long-spine Acacia roemeriana CATCLAW Roemer Acer grandidentatum MAPLE Canyon Acer nigrum MAPLE Black Acer platanoides MAPLE Norway Acer saccharinum MAPLE Silver Aesculus pavia BUCKEYE Red Aesculus sylvatica BUCKEYE Painted Ailanthus altissima AILANTHUS Tree-of-heaven Albizia julibrissin SILKTREE Mimosa Albizia lebbek LEBBEK Lebbek Alnus iridis ssp. sinuata ALDER Sitka Alnus maritima ALDER Seaside Alvaradoa amorphoides ALVARADOA Mexican Amelanchier laevis SERVICEBERRY Allegheny Amyris balsamifera TORCHWOOD Balsam Annona squamosa SUGAR-APPLE NA Araucaria cunninghamii ARAUCARIA Cunningham Arctostaphylos glauca MANZANITA Bigberry Asimina obovata PAWPAW Bigflower Bourreria radula STRONGBACK Rough Brasiliopuntia brasiliensis PRICKLY-PEAR Brazilian Bursera simaruba GUMBO-LIMBO NA Caesalpinia pulcherrima FLOWERFENCE NA Capparis flexuosa CAPERTREE Limber CRUCIFIXION- Castela emoryi THORN NA Casuarina equisetifolia CASUARINA Horsetail Ceanothus arboreus CEANOTHUS Feltleaf Ceanothus spinosus CEANOTHUS Greenbark Celtis lindheimeri HACKBERRY Lindheimer Celtis occidentalis HACKBERRY Common Cephalanthus occidentalis BUTTONBUSH Common Cercis canadensis REDBUD Eastern Cercocarpus traskiae CERCOCARPUS Catalina Chrysophyllum oliviforme SATINLEAF NA Citharexylum berlandieri FIDDLEWOOD Berlandier Citrus aurantifolia LIME NA Citrus sinensis ORANGE Orange Coccoloba uvifera SEAGRAPE NA Colubrina arborescens COLUBRINA Coffee Colubrina cubensis COLUBRINA Cuba Condalia globosa
    [Show full text]
  • The Collection of Oak Trees of Mexico and Central America in Iturraran Botanical Gardens
    The Collection of Oak Trees of Mexico and Central America in Iturraran Botanical Gardens Francisco Garin Garcia Iturraran Botanical Gardens, northern Spain [email protected] Overview Iturraran Botanical Gardens occupy 25 hectares of the northern area of Spain’s Pagoeta Natural Park. They extend along the slopes of the Iturraran hill upon the former hay meadows belonging to the farmhouse of the same name, currently the Reception Centre of the Park. The minimum altitude is 130 m above sea level, and the maximum is 220 m. Within its bounds there are indigenous wooded copses of Quercus robur and other non-coniferous species. Annual precipitation ranges from 140 to 160 cm/year. The maximum temperatures can reach 30º C on some days of summer and even during periods of southern winds on isolated days from October to March; the winter minimums fall to -3º C or -5 º C, occasionally registering as low as -7º C. Frosty days are few and they do not last long. It may snow several days each year. Soils are fairly shallow, with a calcareous substratum, but acidified by the abundant rainfall. In general, the pH is neutral due to their action. Collections The first plantations date back to late 1987. There are currently approximately 5,000 different taxa, the majority being trees and shrubs. There are around 3,000 species, including around 300 species from the genus Quercus; 100 of them are from Mexico and Central America. Quercus costaricensis photo©Francisco Garcia 48 International Oak Journal No. 22 Spring 2011 Oaks from Mexico and Oaks from Mexico
    [Show full text]
  • Scientific Name Common Name NATURAL ASSOCIATIONS of TREES and SHRUBS for the PIEDMONT a List
    www.rainscapes.org NATURAL ASSOCIATIONS OF TREES AND SHRUBS FOR THE PIEDMONT A list of plants which are naturally found growing with each other and which adapted to the similar growing conditions to each other Scientific Name Common Name Acer buergeranum Trident maple Acer saccarum Sugar maple Acer rubrum Red Maple Betula nigra River birch Trees Cornus florida Flowering dogwood Fagus grandifolia American beech Maple Woods Liriodendron tulipifera Tulip-tree, yellow poplar Liquidamber styraciflua Sweetgum Magnolia grandiflora Southern magnolia Amelanchier arborea Juneberry, Shadbush, Servicetree Hamamelis virginiana Autumn Witchhazel Shrubs Ilex opaca American holly Ilex vomitoria*** Yaupon Holly Viburnum acerifolium Maple leaf viburnum Aesulus parvilflora Bottlebrush buckeye Aesulus pavia Red buckeye Carya ovata Shadbark hickory Cornus florida Flowering dogwood Halesia carolina Crolina silverbell Ilex cassine Cassina, Dahoon Ilex opaca American Holly Liriodendron tulipifera Tulip-tree, yellow poplar Trees Ostrya virginiana Ironwood Prunus serotina Wild black cherry Quercus alba While oak Quercus coccinea Scarlet oak Oak Woods Quercus falcata Spanish red oak Quercus palustris Pin oak Quercus rubra Red oak Quercus velutina Black oak Sassafras albidum Sassafras Azalea nudiflorum Pinxterbloom azalea Azalea canescens Piedmont azalea Ilex verticillata Winterberry Kalmia latifolia Mountain laurel Shrubs Rhododenron calendulaceum Flame azalea Rhus copallina Staghorn sumac Rhus typhina Shining sumac Vaccinium pensylvanicum Low-bush blueberry Magnolia
    [Show full text]
  • A Systems Biology Approach for Identifying Candidate Genes
    A systems biology approach for identifying candidate genes involved in the natural variability of biomass yield and chemical properties in black poplar Vincent Segura, Marie-Claude Lesage Descauses, Jean-Paul Charpentier, Kévin Kinkel, Claire Mandin, Kévin Ader, Nassim Belmokhtar, Nathalie Boizot, Corinne Buret, Annabelle Dejardin, et al. To cite this version: Vincent Segura, Marie-Claude Lesage Descauses, Jean-Paul Charpentier, Kévin Kinkel, Claire Mandin, et al.. A systems biology approach for identifying candidate genes involved in the natural variability of biomass yield and chemical properties in black poplar. IUFRO Genomics and Forest Tree Genetics, May 2016, Arcachon, France. 2016, IUFRO Genomics and Forest Tree Genetics. Book of Abstract. hal-01456004 HAL Id: hal-01456004 https://hal.archives-ouvertes.fr/hal-01456004 Submitted on 3 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Abstract Book 1 Table of Contents Welcome……………………………………………………………………………………3 Presentation Abstracts……………………………………………………………………4 Opening Keynote Lecture………………………………………………………………...4
    [Show full text]
  • Oaks (Quercus Spp.): a Brief History
    Publication WSFNR-20-25A April 2020 Oaks (Quercus spp.): A Brief History Dr. Kim D. Coder, Professor of Tree Biology & Health Care / University Hill Fellow University of Georgia Warnell School of Forestry & Natural Resources Quercus (oak) is the largest tree genus in temperate and sub-tropical areas of the Northern Hemisphere with an extensive distribution. (Denk et.al. 2010) Oaks are the most dominant trees of North America both in species number and biomass. (Hipp et.al. 2018) The three North America oak groups (white, red / black, and golden-cup) represent roughly 60% (~255) of the ~435 species within the Quercus genus worldwide. (Hipp et.al. 2018; McVay et.al. 2017a) Oak group development over time helped determine current species, and can suggest relationships which foster hybridization. The red / black and white oaks developed during a warm phase in global climate at high latitudes in what today is the boreal forest zone. From this northern location, both oak groups spread together southward across the continent splitting into a large eastern United States pathway, and much smaller western and far western paths. Both species groups spread into the eastern United States, then southward, and continued into Mexico and Central America as far as Columbia. (Hipp et.al. 2018) Today, Mexico is considered the world center of oak diversity. (Hipp et.al. 2018) Figure 1 shows genus, sub-genus and sections of Quercus (oak). History of Oak Species Groups Oaks developed under much different climates and environments than today. By examining how oaks developed and diversified into small, closely related groups, the native set of Georgia oak species can be better appreciated and understood in how they are related, share gene sets, or hybridize.
    [Show full text]
  • Vascular Plant and Vertebrate Inventory of Fort Bowie National Historic Site Vascular Plant and Vertebrate Inventory of Fort Bowie National Historic Site
    Powell, Schmidt, Halvorson In Cooperation with the University of Arizona, School of Natural Resources Vascular Plant and Vertebrate Inventory of Fort Bowie National Historic Site Vascular Plant and Vertebrate Inventory of Fort Bowie National Historic Site Plant and Vertebrate Vascular U.S. Geological Survey Southwest Biological Science Center 2255 N. Gemini Drive Flagstaff, AZ 86001 Open-File Report 2005-1167 Southwest Biological Science Center Open-File Report 2005-1167 February 2007 U.S. Department of the Interior U.S. Geological Survey National Park Service In cooperation with the University of Arizona, School of Natural Resources Vascular Plant and Vertebrate Inventory of Fort Bowie National Historic Site By Brian F. Powell, Cecilia A. Schmidt , and William L. Halvorson Open-File Report 2005-1167 December 2006 USGS Southwest Biological Science Center Sonoran Desert Research Station University of Arizona U.S. Department of the Interior School of Natural Resources U.S. Geological Survey 125 Biological Sciences East National Park Service Tucson, Arizona 85721 U.S. Department of the Interior DIRK KEMPTHORNE, Secretary U.S. Geological Survey Mark Myers, Director U.S. Geological Survey, Reston, Virginia: 2006 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS-the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web:http://www.usgs.gov Telephone: 1-888-ASK-USGS Suggested Citation Powell, B. F, C. A. Schmidt, and W. L. Halvorson. 2006. Vascular Plant and Vertebrate Inventory of Fort Bowie National Historic Site.
    [Show full text]
  • Quercus ×Coutinhoi Samp. Discovered in Australia Charlie Buttigieg
    XXX International Oaks The Journal of the International Oak Society …the hybrid oak that time forgot, oak-rod baskets, pros and cons of grafting… Issue No. 25/ 2014 / ISSN 1941-2061 1 International Oaks The Journal of the International Oak Society … the hybrid oak that time forgot, oak-rod baskets, pros and cons of grafting… Issue No. 25/ 2014 / ISSN 1941-2061 International Oak Society Officers and Board of Directors 2012-2015 Officers President Béatrice Chassé (France) Vice-President Charles Snyers d’Attenhoven (Belgium) Secretary Gert Fortgens (The Netherlands) Treasurer James E. Hitz (USA) Board of Directors Editorial Committee Membership Director Chairman Emily Griswold (USA) Béatrice Chassé Tour Director Members Shaun Haddock (France) Roderick Cameron International Oaks Allen Coombes Editor Béatrice Chassé Shaun Haddock Co-Editor Allen Coombes (Mexico) Eike Jablonski (Luxemburg) Oak News & Notes Ryan Russell Editor Ryan Russell (USA) Charles Snyers d’Attenhoven International Editor Roderick Cameron (Uruguay) Website Administrator Charles Snyers d’Attenhoven For contributions to International Oaks contact Béatrice Chassé [email protected] or [email protected] 0033553621353 Les Pouyouleix 24800 St.-Jory-de-Chalais France Author’s guidelines for submissions can be found at http://www.internationaloaksociety.org/content/author-guidelines-journal-ios © 2014 International Oak Society Text, figures, and photographs © of individual authors and photographers. Graphic design: Marie-Paule Thuaud / www.lecentrecreatifducoin.com Photos. Cover: Charles Snyers d’Attenhoven (Quercus macrocalyx Hickel & A. Camus); p. 6: Charles Snyers d’Attenhoven (Q. oxyodon Miq.); p. 7: Béatrice Chassé (Q. acerifolia (E.J. Palmer) Stoynoff & W. J. Hess); p. 9: Eike Jablonski (Q. ithaburensis subsp.
    [Show full text]
  • Diversity of Wisconsin Rosids
    Diversity of Wisconsin Rosids . oaks, birches, evening primroses . a major group of the woody plants (trees/shrubs) present at your sites The Wind Pollinated Trees • Alternate leaved tree families • Wind pollinated with ament/catkin inflorescences • Nut fruits = 1 seeded, unilocular, indehiscent (example - acorn) *Juglandaceae - walnut family Well known family containing walnuts, hickories, and pecans Only 7 genera and ca. 50 species worldwide, with only 2 genera and 4 species in Wisconsin Carya ovata Juglans cinera shagbark hickory Butternut, white walnut *Juglandaceae - walnut family Leaves pinnately compound, alternate (walnuts have smallest leaflets at tip) Leaves often aromatic from resinous peltate glands; allelopathic to other plants Carya ovata Juglans cinera shagbark hickory Butternut, white walnut *Juglandaceae - walnut family The chambered pith in center of young stems in Juglans (walnuts) separates it from un- chambered pith in Carya (hickories) Juglans regia English walnut *Juglandaceae - walnut family Trees are monoecious Wind pollinated Female flower Male inflorescence Juglans nigra Black walnut *Juglandaceae - walnut family Male flowers apetalous and arranged in pendulous (drooping) catkins or aments on last year’s woody growth Calyx small; each flower with a bract CA 3-6 CO 0 A 3-∞ G 0 Juglans cinera Butternut, white walnut *Juglandaceae - walnut family Female flowers apetalous and terminal Calyx cup-shaped and persistant; 2 stigma feathery; bracted CA (4) CO 0 A 0 G (2-3) Juglans cinera Juglans nigra Butternut, white
    [Show full text]