Glycosphingolipids Are Modulators of Disease Pathogenesis in Amyotrophic Lateral Sclerosis

Total Page:16

File Type:pdf, Size:1020Kb

Glycosphingolipids Are Modulators of Disease Pathogenesis in Amyotrophic Lateral Sclerosis Glycosphingolipids are modulators of disease pathogenesis in amyotrophic lateral sclerosis James C. Dodgea,1, Christopher M. Treleavena, Joshua Pachecoa, Samantha Coopera,ChannaBaoa, Marissa Abrahama, Mandy Cromwella, S. Pablo Sardia, Wei-Lien Chuanga, Richard L. Sidmanb,1,2,SengH.Chenga, and Lamya S. Shihabuddina aRare Diseases Science, Genzyme, a Sanofi Company, Framingham, MA 01701; and bBeth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215 Contributed by Richard L. Sidman, May 7, 2015 (sent for review January 12, 2015; reviewed by David V. Schaffer) Recent genetic evidence suggests that aberrant glycosphingolipid mediates the hydrolysis of Cer, are linked to forms of spinal metabolism plays an important role in several neuromuscular muscular atrophy that are not caused by the more frequent mu- diseases including hereditary spastic paraplegia, hereditary sen- tations in the survival motor neuron 1 gene (non-5q SMA) (15). sory neuropathy type 1, and non-5q spinal muscular atrophy. Here, Moreover, hereditary spastic paraplegia (HSP), a disease with cor- we investigated whether altered glycosphingolipid metabolism is ticospinal tract and in some cases, spinal cord MN degeneration, a modulator of disease course in amyotrophic lateral sclerosis (ALS). is attributed to mutations in GM2 synthase (16) and the non- Levels of ceramide, glucosylceramide, galactocerebroside, lactosyl- lysosomal glucosylceramidase, GBA2 (17). Last, patients with adult- ceramide, globotriaosylceramide, and the gangliosides GM3 and onset Tay-Sachs disease (GM2 gangliosidosis), a disease triggered GM1 were significantly elevated in spinal cords of ALS patients. by a deficiency in hexosaminidase (HEX), a lysosomal enzyme Moreover, enzyme activities (glucocerebrosidase-1, glucocerebrosi- that hydrolyzes GM2 to GM3, have been reported in some in- dase-2, hexosaminidase, galactosylceramidase, α-galactosidase, and stances to display a disease phenotype that closely mimics ALS β-galactosidase) mediating glycosphingolipid hydrolysis were also (18–20). Interestingly, HEX mRNA is up-regulated within MNs elevated up to threefold. Increased ceramide, glucosylceramide, of transgenic mice expressing the mutant human SOD1 protein G93A GM3, and hexosaminidase activity were also found in SOD1G93A (i.e., SOD1 mice), a familial model of ALS (21, 22). Collec- mice, a familial model of ALS. Inhibition of glucosylceramide syn- tively, these findings suggest that titration of GSLs is important to thesis accelerated disease course in SOD1G93A mice, whereas infu- maintaining neuromuscular system homeostasis. Similar to other sion of exogenous GM3 significantly slowed the onset of paralysis metabolic aspects thought to influence ALS disease progression NEUROSCIENCE and increased survival. Our results suggest that glycosphingolipids (23), GSL bioactivity in the neuromuscular system is likely exerted – SI Ap- are likely important participants in pathogenesis of ALS and merit through an inverted U-shaped dose response curve ( pendix further analysis as potential drug targets. ,Fig.S1). Healthy (or eustatic) GSL levels are achieved in the central, optimal range of the curve, whereas GSL levels that motor neuron disease | SALS | FALS | mouse models neurological disease promote features of disease (or cacostasis) are associated with either end of the curve (i.e., instances of GSL insufficiency or excess). Here, we investigated whether disrupted GSL homeostasis myotrophic lateral sclerosis (ALS) is a progressive neuro- contributes to neurodegeneration in ALS. We show that altered Adegenerative disorder characterized by selective loss of motor GSL metabolism is a manifestation of sporadic and familial ALS neurons (MNs) within the CNS. Although our understanding of the genetic basis of ALS has advanced greatly in recent years (1), Significance the adverse biological processes that converge on the neuromus- cular axis to drive both MN death and neuropathological features in additional cell types remain largely unknown. Glycosphingolipids Glycosphingolipids are a heterogeneous group of membrane (GSLs) are a heterogeneous group of membrane lipids formed lipids formed through the covalent linkage of a glycan moiety to ceramide. Genetic evidence suggests that aberrant glyco- through the covalent linkage of a glycan moiety to ceramide sphingolipid metabolism plays an important role in several neu- (Cer; see SI Appendix,Fig.S1for an overview of GSL metabolism). romuscular diseases. Here, we investigated whether alterations in Glucosylceramide (GlcCer) and galactosylceramide (GalCer) are glycosphingolipids contribute to neurodegeneration in amyo- GSLs with a single sugar residue: glucose and galactose respec- trophic lateral sclerosis (ALS). We show that ALS patients and tively. The successive addition of galactose and sialic acid moie- model mice display disease-related changes in spinal cord glyco- ties to GlcCer results in the synthesis of gangliosides (e.g., GM3, sphingolipids levels and in the enzymes that regulate their GM2, and GM1) (2). GSLs are especially abundant in the CNS metabolism. Importantly, we demonstrate that inhibition of and have bioactive roles in metabolism, growth factor signaling, glycosphingolipid synthesis in ALS model mice exacerbated dis- oligodendrocyte differentiation, neuroinflammation, angiogene- ease progression, whereas administration of GM3, a subtype of – — sis, and pathways of cell death (2 9) all of which are thought to glycosphingolipids, slowed it, thus implicating glycosphingolipids participate in ALS disease pathogenesis. as potentially important participants in ALS pathogenesis and Several lines of evidence suggest that aberrant changes in GSL potential targets for future drug development. homeostasis may contribute to disease pathogenesis in ALS. Ev- idence includes the detection of unique gangliosides (10), high Author contributions: J.C.D. designed research; J.C.D., C.M.T., J.P., S.C., C.B., M.A., S.P.S., titer serum auto-antibodies to GM2 and GM1 (11, 12), and ele- and W.-L.C. performed research; M.C. contributed new reagents/analytic tools; J.C.D., vated GM2 levels within the motor cortex of ALS patients (13). R.L.S., S.H.C., and L.S.S. analyzed data; and J.C.D., R.L.S., S.H.C., and L.S.S. wrote the paper. Furthermore, a number of neuromuscular diseases are associated Reviewers included: D.V.S., University of California, Berkeley. with mutations in genes that regulate the metabolism of Cer and The authors declare no conflict of interest. GSLs. For example, hereditary sensory neuropathy type I (HSNT1), Freely available online through the PNAS open access option. a disease that features dorsal root ganglion cell and MN degen- 1To whom correspondence may be addressed. Email: [email protected] or eration, is attributed to mutations in serine palmitoyltransferase [email protected]. long chain base subunit-1 (SPTLC1), the rate-limiting enzyme in 2Present address: Schepens Eye Research Institute, Department of Ophthalmology, Cer synthesis. Notably, certain mutations in SPTLC1 associated Harvard Medical School, Boston, MA 02114. with HSNT1 result in elevated levels of Cer and GlcCer (14). In This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. addition, mutations in acid ceramidase (ASHA1), an enzyme that 1073/pnas.1508767112/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1508767112 PNAS Early Edition | 1of6 Downloaded by guest on September 27, 2021 and that modulation of GSL levels in SOD1G93A mice significantly in MB SOD1G93A mice, which is very similar to what was seen affects disease course. human ALS tissue. Interestingly, similar fluctuations (i.e., an initial significant decline in SYMP and ES mice followed by a resurgence Results in MB mice relative to SYMP mice) were observed for almost all GSL Levels Are Increased in the Spinal Cords of ALS Patients. To de- GSLs downstream of GlcCer including LacCer, GL3 and GM1, termine whether GSL levels are modified in the spinal cords of with the only exception being GM3. Total levels of GM3 were ALS patients, we examined cervical spinal tissue samples collected significantly elevated at all phases of disease (SI Appendix,Fig.S3) at autopsy from six male ALS patients and six age-matched male and specific isoforms displayed progressive accumulation (Fig. 2 controls. In contrast to earlier studies that examined total GSL and SI Appendix,TableS2). Disease-related fluctuations in GalCer levels in the whole spinal cord (10), we analyzed gray matter (GM) and SPM, additional lipids derived from Cer (Fig. 1), were similar and ventral white matter (VWM) samples separately, because to several of the GSLs analyzed with levels (for major isoforms) regional variation in total ganglioside levels within segments of being significantly (P < 0.0001) depressed in SYMP and ES mice spinal cord have previously been reported (24). We also measured followed by a rebound in MB mice (Fig. 2). individual molecular isoforms of GSLs because of their distinct biological functions (25). Lipids analyzed include ceramide (Cer), Enzymes Involved in Modulating GSL Levels Are Altered in ALS Patients sphingomyelin (SPM), glucosylceramide (GlcCer), galactosylcer- and SOD1G93A Mice. Next, we asked whether GSL accumulation amide (GalCer), lactosylceramide (LacCer), globotriaosylcer- within the spinal cords of ALS patients was due to impaired en- amide (GL3), and the gangliosides GM3 and GM1 (SI Appendix, zymatic action either within lysosomes or other cytoplasmic
Recommended publications
  • Hexosaminidase in Mast Β Primary Role of Degranulation Indicator in Mast Cells?
    Does β-Hexosaminidase Function Only as a Degranulation Indicator in Mast Cells? The Primary Role of β-Hexosaminidase in Mast Cell Granules This information is current as of September 25, 2021. Nobuyuki Fukuishi, Shinya Murakami, Akane Ohno, Naoya Yamanaka, Nobuaki Matsui, Kenji Fukutsuji, Sakuo Yamada, Kouji Itoh and Masaaki Akagi J Immunol 2014; 193:1886-1894; Prepublished online 11 July 2014; Downloaded from doi: 10.4049/jimmunol.1302520 http://www.jimmunol.org/content/193/4/1886 http://www.jimmunol.org/ Supplementary http://www.jimmunol.org/content/suppl/2014/07/11/jimmunol.130252 Material 0.DCSupplemental References This article cites 52 articles, 18 of which you can access for free at: http://www.jimmunol.org/content/193/4/1886.full#ref-list-1 Why The JI? Submit online. by guest on September 25, 2021 • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2014 by The American Association of
    [Show full text]
  • Quality Assessment Enzyme Analysis for Lysosomal Storage Diseases ERNDIM / EUGT Meeting 5-6 October 2006, Prague
    QQuality Assessment Enzyme Analysis for Lysosomal Storage Diseases ERNDIM / EUGT meeting 5-6 October 2006, Prague Results of 1st “large scale” pilot Quality Assessment Enzyme Analysis for Lysosomal Storage Diseases Laboratories Rotterdam Hamburg/Heidelberg Dr, Zoltan Lukacs/Dr. Friederike Bürger QA-pilot for LSD’s the aims • Inter-laboratory variation ─ Many participants: > 30 • Intra-laboratory variation ─ Analyse two pairs of identical control samples (blind) • Proficiency testing of enzyme deficiencies ─ Which samples are best? - Blood samples: most widely used, but impractible - Fibroblasts: good but laborious - EBV lymphoblasts: easy to obtain, not widely used QA-pilot for LSD’s the set up • Samples, without clinical information ─ Leukocytes ─ EBV lymphoblasts ─ Fibroblasts • Enzymes: easy ones ─ 4MU-substrates ─ Simple colorimetric assays • Shipping: economic ─ Send at room temp., postal service - Lyophilised enzymes, stable at room temp. for 5 days - Fibroblasts • Data entry through existing ERNDIM programmes ─ “Metabolite presentation” (www.erndimqa.nl Æ Lysosomal Enzymes) QA-pilot for LSD’s the participants • Questionnaire to members (85 from 21 countries) ─ 40 labs want to join a QA-pilot ─ 65% want to include DBS in future QA-schemes • Samples sent, data returned ─ 40 labs received samples ─ 36 labs entered data on www.erndimqa.nl QA-pilot for LSD’s the samples • 10 samples ─ 4 leukocytes (two duplicate samples) ─ 4 EBV lymphoblasts ─ 2 fibroblasts • 10 easy enzymes ─ specific enzyme activity (e.g.. nmol/h/mg) ─ normalise to
    [Show full text]
  • Functional Characterization of Carbohydrate-Active Enzymes from Marine Bacteria
    Functional characterization of carbohydrate-active enzymes from marine bacteria I n a u g u r a l d i s s e r t a t i o n zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) der Mathematisch-Naturwissenschaftlichen Fakultät der Universität Greifswald vorgelegt von Marcus Bäumgen Greifswald, 28.02.2020 Dekan: Prof. Dr. Werner Weitschies 1. Gutachter: Prof. Dr. Uwe T. Bornscheuer 2. Gutachter: Prof. Dr. Harry Brumer Tag der Promotion: 24.06.2020 II III Wissenschaft ist das Werkzeug, welches es uns ermöglicht, das große Puzzel der Natur und des Lebens zu lösen. IV Auch wenn wir den Weg des Wissens und der Weisheit niemals bis zum Ende beschreiten können, so ist doch jeder Schritt, den wir tun, ein Schritt in eine bessere Welt. V Content Abbreviations ..................................................................................................................... IX 1. Introduction ..................................................................................................................... 1 1.1 The marine carbon cycle .............................................................................................. 1 1.1.1 Algal blooms .......................................................................................................... 1 1.1.2 The marine carbohydrates ulvan and xylan ........................................................... 2 1.1.3 Marine polysaccharide utilization ........................................................................... 4 1.2 Carbohydrate-active enzymes
    [Show full text]
  • Mannosidases Are the Putative Catabolic Enzymes Which
    THE CHARACTERIZATION OF A NOVEL HUMAN CORE-SPECIFIC LYSOSOMAL α1-6MANNOSIDASE INVOLVED IN N-GLYCAN CATABOLISM by CHAEHO PARK (Under the Direction of Kelley W. Moremen) ABSTRACT In humans and rodents lysosomal catabolism of Man3GlcNAc2 core N-glycan structures results from the concerted actions of exoglycosidases including the broad specificity lysosomal α- mannosidase (LysMan), a core-specific α1-6mannosidase, and β-mannosidase, as well as the core chitobiose cleavage by an di-N-acetylchitobiase. In ungulates and carnivora, both the chitobiase and the α1-6mannosidase enzyme activities are absent suggesting a co-regulation of the two enzymes. We describe here the cloning, expression, purification and characterization of the human core-specific α1-6mannosidase with similarity to members of the glycosylhydrolase family 38. The recombinant enzyme had a pH optimum of 4.0, was potently inhibited by swainsonine and 1,4-dideoxy1,4-imino-D-mannitol, and was stimulated by Co+2. NMR-based time course substrate specificity studies comparing the α1-6mannosidase with human LysMan revealed that the former enzyme selectively cleaved the α1-6mannose residue from Man3GlcNAc, but not Man3GlcNAc2 or other larger high mannose structures, indicating the requirement for chitobiase action prior to α1-6mannosidase cleavage. In contrast, LysMan cleaved all of the α-linked mannose residues from Man9-5GlcNAc2, Man3GlcNAc2, or Man3GlcNAc structures except the core α1-6mannose residue. Transcripts encoding the α1-6mannosidase were ubiquitously expressed in human tissues and expressed sequence tag searches in various mammalian species demonstrated a similar distribution in species-specific expression as the chitobiase. No expressed sequence tags were identified for bovine α1-6mannosidase despite the identification of two homologs in the bovine genome.
    [Show full text]
  • The Metabolism of Tay-Sachs Ganglioside: Catabolic Studies with Lysosomal Enzymes from Normal and Tay-Sachs Brain Tissue
    The Metabolism of Tay-Sachs Ganglioside: Catabolic Studies with Lysosomal Enzymes from Normal and Tay-Sachs Brain Tissue JOHN F. TALLMAN, WILLIAM G. JOHNSON, and ROSCOE 0. BRADY From the Developmental and Metabolic Neurology Branch, National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, Maryland 20014, and the Department of Biochemistry, Georgetown University School of Medicine, Washington, D. C. 20007 A B S T R A C T The catabolism of Tay-Sachs ganglioside, date fronm the 19th century and over 599 cases have been N-acetylgalactosaminyl- (N-acetylneuraminosyl) -galac- reported (1). Onset of the disease is in the first 6 months tosylglucosylceramide, has been studied in lysosomal of life and is characterized by apathy, hyperacusis, motor preparations from normal human brain and brain ob- weakness, and appearance of a macular cherry-red spot tained at biopsy from Tay-Sachs patients. Utilizing Tay- in the retina. Seizures and progressive mental deteriora- Sachs ganglioside labeled with '4C in the N-acetylgalac- tion follow with blindness, deafness, and spasticity, lead- tosaminyl portion or 3H in the N-acetylneuraminosyl ing to a state of decerebrate rigidity. These infants usu- portion, the catabolism of Tay-Sachs ganglioside may be ally die by 3 yr of age (2). initiated by either the removal of the molecule of A change in the chemical composition of the brain of N-acetylgalactosamine or N-acetylneuraminic acid. The such patients was first detected by Klenk who showed activity of the N-acetylgalactosamine-cleaving enzyme that there was an increase in the ganglioside content (hexosaminidase) is drastically diminished in such compared with normal human brain tissue (3).
    [Show full text]
  • GM2 Gangliosidoses: Clinical Features, Pathophysiological Aspects, and Current Therapies
    International Journal of Molecular Sciences Review GM2 Gangliosidoses: Clinical Features, Pathophysiological Aspects, and Current Therapies Andrés Felipe Leal 1 , Eliana Benincore-Flórez 1, Daniela Solano-Galarza 1, Rafael Guillermo Garzón Jaramillo 1 , Olga Yaneth Echeverri-Peña 1, Diego A. Suarez 1,2, Carlos Javier Alméciga-Díaz 1,* and Angela Johana Espejo-Mojica 1,* 1 Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; [email protected] (A.F.L.); [email protected] (E.B.-F.); [email protected] (D.S.-G.); [email protected] (R.G.G.J.); [email protected] (O.Y.E.-P.); [email protected] (D.A.S.) 2 Faculty of Medicine, Universidad Nacional de Colombia, Bogotá 110231, Colombia * Correspondence: [email protected] (C.J.A.-D.); [email protected] (A.J.E.-M.); Tel.: +57-1-3208320 (ext. 4140) (C.J.A.-D.); +57-1-3208320 (ext. 4099) (A.J.E.-M.) Received: 6 July 2020; Accepted: 7 August 2020; Published: 27 August 2020 Abstract: GM2 gangliosidoses are a group of pathologies characterized by GM2 ganglioside accumulation into the lysosome due to mutations on the genes encoding for the β-hexosaminidases subunits or the GM2 activator protein. Three GM2 gangliosidoses have been described: Tay–Sachs disease, Sandhoff disease, and the AB variant. Central nervous system dysfunction is the main characteristic of GM2 gangliosidoses patients that include neurodevelopment alterations, neuroinflammation, and neuronal apoptosis. Currently, there is not approved therapy for GM2 gangliosidoses, but different therapeutic strategies have been studied including hematopoietic stem cell transplantation, enzyme replacement therapy, substrate reduction therapy, pharmacological chaperones, and gene therapy.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Pompe Disease
    Substrate Localisation as a Therapeutic Option for Pompe Disease A thesis submitted to The University of Adelaide for the degree of DOCTOR OF PHILOSOPHY by Christopher Travis Turner, BBtech (Hons) Lysosomal Diseases Research Unit Department of Genetic Medicine Women’s & Children’s Hospital North Adelaide, South Australia, 5006 October 2013 Paediatrics Paediatrics and Reproductive Health The University of Adelaide 1 Table of Contents Abstract 7 Declaration of authenticity 9 Acknowledgments 10 Abbreviations 11 List of figures 15 List of tables 18 Chapter 1 – Introduction 19 1.1 The endosome-lysosome System 20 1.1.1 The endosome 20 1.1.2 The lysosome 25 1.1.3 Autophagosomes 28 1.2 Pompe disease 36 1.2.1 Incidence 37 1.2.2 Clinical manifestations 37 1.2.3 Genetics 39 1.2.4 Diagnosis 41 1.2.5 Lysosomal acid α-glucosidase (GAA) 42 1.2.6 Glycogen synthesis and metabolism 44 1.2.6.1 Glycogen synthesis 46 1.2.6.2 Glycogen catabolism 49 2 1.2.6.3 Autophagy and lysosomal degradation of glycogen 50 1.2.7 Glycogen accumulation in Pompe disease 52 1.2.8 Treatment of Pompe disease 54 1.2.8.1 Gene therapy 54 1.2.8.2 Chaperone therapy 55 1.2.8.3 Enzyme replacement therapy 56 1.3 Exocytosis 60 1.3.1 Ca2+-dependent exocytosis 62 1.3.2 Exocytic mechanism 64 1.3.3 All-or-none exocytosis 66 1.3.4 Cavicapture 66 1.3.5 The contribution of all-or-none exocytosis and cavicapture to the overall amount of exocytosis 67 1.3.6 Evidence for the exocytosis of glycogen in Pompe disease 68 1.4 Hypothesis and aims 70 Chapter 2 – Materials and Methods 71 2.1 Materials 72
    [Show full text]
  • Molecular Cloning and Knockdown of Galactocerebrosidase in Zebrafish
    Biochimica et Biophysica Acta 1842 (2014) 665–675 Contents lists available at ScienceDirect Biochimica et Biophysica Acta journal homepage: www.elsevier.com/locate/bbadis Molecular cloning and knockdown of galactocerebrosidase in zebrafish: New insights into the pathogenesis of Krabbe's disease Daniela Zizioli a,1, Michela Guarienti a,1,ChiaraTobiab, Giuseppina Gariano b, Giuseppe Borsani c, Roberto Bresciani a,RobertoRoncab, Edoardo Giacopuzzi c, Augusto Preti a, Germano Gaudenzi d, Mirella Belleri b, Emanuela Di Salle b, Gemma Fabrias e, Josefina Casas e,DomenicoRibattif,g, Eugenio Monti a,MarcoPrestab,⁎ a Unit of Biotechnology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy b Unit of Oncology and Experimental Immunology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy c Unit of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy d Department of Biology, University of Milan, Milan, Italy e Research Unit on Bioactive Molecules (RUBAM), Department of Biomedicinal Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC), Spanish Council for Scientific Research (CSIC), Barcelona, Spain f Department of Basic Biomedical Sciences, Unit of Human Anatomy and Histology, University of Bari, Bari, Italy g National Cancer Institute, Giovanni Paolo II, Bari, Italy article info abstract Article history: The lysosomal hydrolase galactocerebrosidase (GALC) catalyzes the removal of galactose from galactosylceramide Received 2 September 2013 and from other sphingolipids. GALC deficiency is responsible for globoid cell leukodystrophy (GLD), or Krabbe's Received in revised form 17 December 2013 disease, an early lethal inherited neurodegenerative disorder characterized by the accumulation of the neurotoxic Accepted 15 January 2014 metabolite psychosine in the central nervous system (CNS).
    [Show full text]
  • ZHOU-THESIS-2018.Pdf (2.307Mb)
    PHYLOGENY AND PREDICTED FUNCTIONAL CAPABILITIES OF A SULFUR- OXIDIZING AND DENITRIFYING CLADE OF BACTEROIDETES FROM SULFIDIC ENVIRONMENTS A Thesis by KECEN ZHOU Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Chair of Committee, Jason B. Sylvan Co-Chair of Committee, Lisa Campbell Committee Member, Brendan E. Roark Head of Department, Shari Yvon-Lewis August 2018 Major Subject: Oceanography Copyright 2018 Kecen Zhou ABSTRACT Environments rich in sulfur compounds (sulfidic) are common in the ocean, and the ability to gain energy (dissimilatory) from sulfur redox reactions is widespread in bacteria. The Sulfiphilic Bacteroidetes (SB), have been found exclusively in sulfidic environments, but little is known about their metabolic potential and membership. The ability to perform dissimilatory sulfur redox would make them unique among Bacteroidetes, which are primarily known as heterotrophs that specialize in degrading complex organic molecules. Using 16S rRNA phylogeny and analysis of single amplified genomes (SAGs) from Saanich Inlet, a seasonally hypoxic basin, we elucidate the global distribution and potential metabolic capabilities of the SB clade. Phylogenetic analysis revealed that this clade was monophyletic and had a global distribution. It is hypothesized this clade combines heterotrophic amino acid and sugar uptake with denitrification and respiratory sulfur oxidation/polysulfide reduction. Putative genes for sulfur oxidation via polysulfide reductase (psr) were found in the combined genome, and phylogenetic analysis confirmed these genes were likely to be psrABC. A denitrification pathway was present and complete save for the absence of a gene catalyzing reduction of NO to N2O.
    [Show full text]
  • GALC Gene Galactosylceramidase
    GALC gene galactosylceramidase Normal Function The GALC gene provides instructions for making an enzyme called galactosylceramidase. Through a process called hydrolysis, this enzyme uses water molecules to break down certain fats called galactolipids, which are found primarily in the nervous system and kidneys. Within cells, galactosylceramidase is found in enzyme-filled sacs called lysosomes where it hydrolyzes specific galactolipids, including galactosylceramide and psychosine. Galactosylceramide is an important component of myelin, the protective covering around certain nerve cells that ensures the rapid transmission of nerve impulses. Its breakdown by galactosylceramidase is part of the normal turnover of myelin that occurs throughout life. Psychosine, which is toxic to cells, forms during the production of myelin and is quickly broken down by galactosylceramidase. Under normal conditions, tissues contain very little psychosine. Health Conditions Related to Genetic Changes Krabbe disease More than 200 GALC gene mutations that cause Krabbe disease have been identified. Krabbe disease is a brain disorder that usually begins in infancy (infantile Krabbe disease) and causes movement and eating problems, impaired development, and seizures. The most common mutation in affected individuals of European ancestry ( often called 30-kb del) deletes a large segment of the GALC gene. Other mutations insert additional DNA building blocks (nucleotides) into the GALC gene, delete a small number of nucleotides from the gene, or replace single nucleotides with incorrect nucleotides. These GALC gene mutations severely reduce or eliminate the activity of the galactosylceramidase enzyme. As a result, galactosylceramide and psychosine cannot be broken down. The accumulation of these galactolipids causes damage to myelin- forming cells, which impairs the formation of myelin and leads to the loss of myelin ( demyelination) in the nervous system.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9,689,046 B2 Mayall Et Al
    USOO9689046B2 (12) United States Patent (10) Patent No.: US 9,689,046 B2 Mayall et al. (45) Date of Patent: Jun. 27, 2017 (54) SYSTEM AND METHODS FOR THE FOREIGN PATENT DOCUMENTS DETECTION OF MULTIPLE CHEMICAL WO O125472 A1 4/2001 COMPOUNDS WO O169245 A2 9, 2001 (71) Applicants: Robert Matthew Mayall, Calgary (CA); Emily Candice Hicks, Calgary OTHER PUBLICATIONS (CA); Margaret Mary-Flora Bebeselea, A. et al., “Electrochemical Degradation and Determina Renaud-Young, Calgary (CA); David tion of 4-Nitrophenol Using Multiple Pulsed Amperometry at Christopher Lloyd, Calgary (CA); Lisa Graphite Based Electrodes', Chem. Bull. “Politehnica” Univ. Kara Oberding, Calgary (CA); Iain (Timisoara), vol. 53(67), 1-2, 2008. Fraser Scotney George, Calgary (CA) Ben-Yoav. H. et al., “A whole cell electrochemical biosensor for water genotoxicity bio-detection”. Electrochimica Acta, 2009, 54(25), 6113-6118. (72) Inventors: Robert Matthew Mayall, Calgary Biran, I. et al., “On-line monitoring of gene expression'. Microbi (CA); Emily Candice Hicks, Calgary ology (Reading, England), 1999, 145 (Pt 8), 2129-2133. (CA); Margaret Mary-Flora Da Silva, P.S. et al., “Electrochemical Behavior of Hydroquinone Renaud-Young, Calgary (CA); David and Catechol at a Silsesquioxane-Modified Carbon Paste Elec trode'. J. Braz. Chem. Soc., vol. 24, No. 4, 695-699, 2013. Christopher Lloyd, Calgary (CA); Lisa Enache, T. A. & Oliveira-Brett, A. M., "Phenol and Para-Substituted Kara Oberding, Calgary (CA); Iain Phenols Electrochemical Oxidation Pathways”, Journal of Fraser Scotney George, Calgary (CA) Electroanalytical Chemistry, 2011, 1-35. Etesami, M. et al., “Electrooxidation of hydroquinone on simply prepared Au-Pt bimetallic nanoparticles'. Science China, Chem (73) Assignee: FREDSENSE TECHNOLOGIES istry, vol.
    [Show full text]