All Land on Earth Is a Watershed. Humans

Total Page:16

File Type:pdf, Size:1020Kb

All Land on Earth Is a Watershed. Humans Watersheds “The study of rivers is not a matter of rivers, but of the human heart.” 4 — Tanaka Shozo ll land on earth is a watershed. Humans or a river basin as large as that of the Columbia and their activities play an important and River. A puddle even has its own watershed. A essential role in watersheds, yet few Within a large watershed tributaries form people understand them. Still fewer know how a smaller watersheds called sub-basins. Each watershed works or can describe the boundaries tributary contributes to overall streamflow for the of the ones in which they live. entire basin. Oregon has 20 major river basins A watershed is often called a drainage basin. (see Figure 4.) It is the land area drained by a network of chan- All watersheds have an aquatic (or water) nels, called tributaries, that increase in size as area, a riparian area, and an upland area. Aquatic the amount of water, sediment, and dissolved areas include standing waters like ponds, lakes, materials they must carry increases. Each water- wetlands, bogs and running surface waters such shed is an interconnected land-water system that as streams and rivers. The corridor of vegetation conveys water to its outlet—a larger stream, an next to and influencing the aquatic area is called inland lake, a wetland, an estuary, or the ocean. the riparian area. A watershed may be the drainage area sur- The point where two watersheds meet is rounding a lake that has no surface outlet, such as called a divide. Connecting the divide with the Malheur and Harney Lakes in southeast Oregon valley or lowland areas below are the hill slopes or uplands. Events in the uplands ultimately Figure 4. Oregon River Basins North Vocabulary Coast Columbia Umatilla Grande aquifers perennial Sandy Hood Ronde baseflow plant associations climate radial drainage Willamette John Day Powder dendritic drainage residual soils deposition riparian area Mid Snake Coast divide streamflow hydrograph Deschutes Malheur ephemeral sub-basins erosion sublimation first-order streams transported soils South Umpqua Goose and forage trellis drainage Coast Summer Lakes Owyhee gradient tributaries Malheur Klamath Lake intermittent uplands Chetco Rogue leaching water equivalent parallel drainage watershed Oregon Department of Fish & Wildlife Watersheds • 33 affect the capture of water on the surface of Headwaters the land, storage and movement of water below the surface, and release of water to Stream Sub-basin riparian and aquatic areas. Each stream in a watershed is an ever- changing open-water system. It carves through Ridge or valleys, collects water and sediments, and con- watershed veys the surface runoff generated by rainfall, divide snowmelt, or groundwater discharge to the estu- aries and oceans. The shape and pattern of a Uplands stream is a result of the land it is cutting and the Present Floodplain river sediment it must carry. channel Each of us has a “watershed address,” which describes our basic relationship with a water- shed. One part of our address is our location. We all live in topographic watersheds—areas drained A watershed is almost like a domicile, a mini- by a common stream. When a raindrop falls on biosphere, with halls of hills and mountains, a floor the roof of our house, where is it going? What of river or lake, and a roof of rain clouds. Adapted creeks or rivers will carry it toward the sea? from Co-Evolution Quarterly, Winter 1976/77. Some people also live in engineered water- sheds, which may not follow topographic lines. When we turn on the faucet in the kitchen sink, Area what watershed did that water come from? When The area of a watershed affects the amount of the water runs down the drain, what watershed is water that flows from the river or stream that it going to? For example, while rainwater in drains it. Generally, with similar climates large much of the Portland Metro area flows into the watersheds receive more precipitation than small Willamette River, much of Portland’s domestic ones. Greater precipitation and runoff may occur water supply is piped from the nearby Bull Run on a smaller watershed in a moist climate than on Watershed, a watershed that flows toward the a large watershed in an arid climate. Columbia River. In this way, one watershed is artificially connected to several other watersheds Shape and slope at once. The watershed of surface flow, the Shape and slope of a watershed and its drainage watershed where domestic water originates, and pattern influence surface runoff and seepage in the watershed where wastewater goes are all streams draining the watershed. The steeper the connected. This means Portland residents live in slope, the greater the possibility for rapid runoff one watershed and drink water from another, and erosion. Plant cover is more difficult to while their wastewater may affect their “home establish and infiltration of surface water is watershed” and others. reduced on steep slopes. Physical features of a Orientation watershed Orientation of a watershed in relation to the Rain, snow, wind, ice, and temperature variations direction that storms move across it also affects are all agents of erosion in a watershed. The runoff and peak flows. A rainstorm moving up a erosional effects of surface water create stream watershed from the mouth releases water in such channels. As streams carve their way through a a way that runoff from the lower section has watershed, they are responsible for most of the passed its peak before runoff from the higher “topographic identity” of a watershed. sections has arrived. A storm starting at the top 34 • The Stream Scene: Watersheds, Wildlife and People Oregon Department of Fish & Wildlife and moving down a watershed can reverse the Figure 5. Stream Orders process. Orientation of a watershed relative to sun 1 1 position affects temperature, evaporation, and 1 transpiration. Soil moisture is more rapidly lost 2 2 1 by evaporation and transpiration on steep slopes 1 3 facing the sun. Watersheds sloping away from 2 3 the sun are cooler, and evaporation and transpira- 1 3 2 tion are less. Slopes exposed to the sun usually 1 3 1 support different plants than those facing away 4 from the sun. Orientation to prevailing winds has similar effects. 4 1 3 5 Drainage patterns 2 1 2 Viewed from above, the tributaries of each river system create a distinct pattern. Geology, topog- 5 raphy, and climate are responsible for this pat- tern. Regions with parallel valleys formed by the folding of the earth’s surface have a parallel age pattern of the individual sub-basins formed drainage pattern. Where the geology is sedimen- by these streams have a dendritic pattern. tary rock, fault lines may create a drainage pat- tern where streams flow parallel to each other Stream orders and tributaries join at nearly right angles in a In most cases, a watershed system is almost trellis drainage pattern. entirely hillsides, called uplands. Only about one In the Pacific Northwest two of the most percent of a watershed is stream channels. The common patterns are radial drainage and den- smallest channels in a watershed have no tribu- dritic (treelike) drainage. When streams drain a taries and are called first-order streams. When central high point, such as a mountain top, they two first-order streams join, they form a second- create a pattern similar to the spokes on a wheel order stream. When two second-order channels radiating out from the central hub. This is radial join, a third-order stream is formed, and so on drainage. (Figure 5). First- and second-order channels are The branching tributaries of a river may also often small, steep, or intermittent. Orders six or create a pattern similar to the branches of a tree. greater are larger rivers. This is dendritic drainage. Both types may occur Channels change by erosion and deposition. within the same watershed. For example, the Natural channels of rivers increase in size down- radial pattern of streams that drain Mount Hood stream as tributaries enter and add to the flow. are all within the Columbia Basin, but the drain- Radial Drainage Dendritic Drainage Parallel Drainage Trellis Drainage Oregon Department of Fish & Wildlife Watersheds • 35 A channel is neither straight nor uniform, yet its is the main contributor to streamflow during dry average size changes in a regular and progressive summer and fall months. Without baseflow, fashion. In upstream reaches, the channel tends many streams would dry up. to be steeper. Gradient decreases downstream as Pumping water from an aquifer for industrial, width and depth increase. The size of sediments irrigation, or domestic use reduces the aquifer’s tends to decrease, often from boulders in the hilly volume. Unless withdrawals are modified or or mountainous upstream portions, to cobbles or recharge increased, the aquifer will eventually be gravels in middle reaches. More sand or silt are depleted. A drained aquifer can collapse from the found downstream. In some cases, large floods settling of the overlying lands. cause new channels to form, leaving once-pro- Collapsed underground aquifers no longer ductive streams dry and barren. have as much capacity to accept and hold water. Recharge is difficult, volume is less, and yields Streamflow types Besides the ordering system previously de- scribed, streams may be classified by how much Land and water are linked of the year they have flowing water. directly by the water cycle. • Perennial flow indicates a nearly year- round flow (90 percent or more) in a well- defined channel. Most higher order streams are perennial. are considerably reduced. Springs once fed from • Intermittent flow generally occurs only the water table also dry up.
Recommended publications
  • Analysis of Streamflow Variability and Trends in the Meta River, Colombia
    water Article Analysis of Streamflow Variability and Trends in the Meta River, Colombia Marco Arrieta-Castro 1, Adriana Donado-Rodríguez 1, Guillermo J. Acuña 2,3,* , Fausto A. Canales 1,* , Ramesh S. V. Teegavarapu 4 and Bartosz Ka´zmierczak 5 1 Department of Civil and Environmental, Universidad de la Costa, Calle 58 #55-66, Barranquilla 080002, Atlántico, Colombia; [email protected] (M.A.-C.); [email protected] (A.D.-R.) 2 Department of Civil and Environmental Engineering, Instituto de Estudios Hidráulicos y Ambientales, Universidad del Norte, Km.5 Vía Puerto Colombia, Barranquilla 081007, Colombia 3 Programa de Ingeniería Ambiental, Universidad Sergio Arboleda, Escuela de Ciencias Exactas e Ingeniería (ECEI), Calle 74 #14-14, Bogotá D.C. 110221, Colombia 4 Department of Civil, Environmental and Geomatics Engineering, Florida Atlantic University, Boca Raton, FL 33431, USA; [email protected] 5 Department of Water Supply and Sewerage Systems, Faculty of Environmental Engineering, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland; [email protected] * Correspondence: [email protected] (F.A.C.); [email protected] (G.J.A.); Tel.: +57-5-3362252 (F.A.C.) Received: 29 March 2020; Accepted: 13 May 2020; Published: 20 May 2020 Abstract: The aim of this research is the detection and analysis of existing trends in the Meta River, Colombia, based on the streamflow records from seven gauging stations in its main course, for the period between June 1983 to July 2019. The Meta River is one of the principal branches of the Orinoco River, and it has a high environmental and economic value for this South American country.
    [Show full text]
  • Stream Discharge (Streamflow)
    The Importance of Streamflow in California’s Southern Sierra Nevada Mountains Kings River Experimental Watersheds Because 55 to 65 percent of California’s developed water comes from small streams in the Sierra Nevada, it is important to under- stand the role the snowpack has in the distribution and quantity of stream discharge (streamflow). In the southern Sierra, more than 80 percent of precipitation falls December through April. However, owing to the delay in snowmelt, there is a lag in runoff until the spring. At higher elevation sites, the spring melt does not peak until May or even June. This makes mountain water available to California during the summer months. The Kings River Experi- mental Watersheds (KREW) sites demonstrate that precipitation in the form of snow generates greater yearly discharge in a given watershed. The difference in discharge between the KREW Provi- dence site and Bull site is as much as 20 percent per year. C. Hunsaker Research Area Figure 1—KREW’s double flume system. The large flume KREW is a watershed-level, integrated ecosystem project for (background) accurately captures high flows, and the small flume headwater streams in the Sierra Nevada. Eight watersheds at two is successful at measuring lower base flows. study sites are fully instrumented to monitor ecosystem changes. Stream discharge data, just one component of the project, have been collected since 2002 from the Providence site and since 2003 from the Bull site. What is Stream Discharge? Discharge is the amount of water leaving each watershed within the stream channel. It is represented as a rate of flow such as cubic feet per second (cfs), gallons per minute (gpm), or acre-feet per year.
    [Show full text]
  • Geomorphic Classification of Rivers
    9.36 Geomorphic Classification of Rivers JM Buffington, U.S. Forest Service, Boise, ID, USA DR Montgomery, University of Washington, Seattle, WA, USA Published by Elsevier Inc. 9.36.1 Introduction 730 9.36.2 Purpose of Classification 730 9.36.3 Types of Channel Classification 731 9.36.3.1 Stream Order 731 9.36.3.2 Process Domains 732 9.36.3.3 Channel Pattern 732 9.36.3.4 Channel–Floodplain Interactions 735 9.36.3.5 Bed Material and Mobility 737 9.36.3.6 Channel Units 739 9.36.3.7 Hierarchical Classifications 739 9.36.3.8 Statistical Classifications 745 9.36.4 Use and Compatibility of Channel Classifications 745 9.36.5 The Rise and Fall of Classifications: Why Are Some Channel Classifications More Used Than Others? 747 9.36.6 Future Needs and Directions 753 9.36.6.1 Standardization and Sample Size 753 9.36.6.2 Remote Sensing 754 9.36.7 Conclusion 755 Acknowledgements 756 References 756 Appendix 762 9.36.1 Introduction 9.36.2 Purpose of Classification Over the last several decades, environmental legislation and a A basic tenet in geomorphology is that ‘form implies process.’As growing awareness of historical human disturbance to rivers such, numerous geomorphic classifications have been de- worldwide (Schumm, 1977; Collins et al., 2003; Surian and veloped for landscapes (Davis, 1899), hillslopes (Varnes, 1958), Rinaldi, 2003; Nilsson et al., 2005; Chin, 2006; Walter and and rivers (Section 9.36.3). The form–process paradigm is a Merritts, 2008) have fostered unprecedented collaboration potentially powerful tool for conducting quantitative geo- among scientists, land managers, and stakeholders to better morphic investigations.
    [Show full text]
  • From the River to You: USGS Real-Time Streamflow Information …From the National Streamflow Information Program
    From the River to You: USGS Real-Time Streamflow Information …from the National Streamflow Information Program This Fact Sheet is one in a series that highlights information or recent research findings from the USGS National Streamflow Information Program (NSIP). The investigations and scientific results reported in this series require a nationally consistent streamgaging network with stable long-term monitoring sites and a rigorous program of data, quality assurance, management, archiving, and synthesis. NSIP produces multipurpose, unbiased surface-water information that is readily accessible to all. Introduction Collecting and Transmitting data are stored in a data logger in Streamflow Information the gagehouse. As part of the National Stream- On a preset schedule, typically flow Information Program, the U.S. The streamflow information every 1 to 4 hours, the streamgage Geological Survey (USGS) operates collected at most streamgages transmits all the stage information more than 7,400 streamgages nation- is stream stage (also called gage recorded since the last transmission to wide to provide streamflow informa- height). This is the height of the a Geostationary Operational Envi- tion for a wide variety of uses. These water surface above a reference level ronmental Satellite (GOES). Many uses include prediction of floods, or datum. Stream stage is measured streamgages have predetermined management and allocation of water by a variety of methods including stage thresholds. When these thresh- resources, design and operation of floats, pressure transducers, and olds are exceeded, the time between engineering structures, scientific acoustic or optical sensors (fig. 1). transmissions to the satellite will research, operation of locks and Stage data are measured at the decrease from 1 to 4 hours to every dams, and for recreational safety and time interval necessary to monitor the 15 minutes to provide more timely enjoyment.
    [Show full text]
  • What to See in Portland Update2009
    What to see in Portland, OR - by Marco Behrmann 07/02/2004 1/3 WHAT TO SEE IN PORTLAND , OR _________________________________________ Listed below you will find a couple of sights and my personal favourites to do in Portland. Since Portland was my town of exchange I do not know as many things about the other cities like Eugene, Corvallis, Ashland or La Grande. However, it would be just great if somebody could add tips about their places similar to the ones here, too! Please feel free to forward them to me (marcobehrmann[at]web.de ). I do not want you to believe that just because I stayed in Portland, and have many tips here for Portland, that a year at one of the other Oregon cities is not the same exciting. The tips listed here, however, are interesting for all Baden-Wuerttemberg students in Oregon, because many things you can already see and experience during your orientation weeks. (BTW: This is almost everything I did (among other things, of course) within my 2 ½ weeks of re-visiting in June 2004; but it took me a year of living in the city in 2001/02 to figure out which were the hot tips ☺) Here are my personal Must-Sees Oregon History Center in SW Park blocks right south of PSU (This museum features very interesting and well researched exhibitions about the development of Portland as a city as well as about the whole Pacific Northwest as it was discovered from the sea and the Columbia River; good place to check out during your orientation weeks; you get a student reduction with ISIC or other student ID card) Council Crest Park (considered the highest spot in Portland; nice views to Mt Hood, Mt Adams, Mt St Helens and even Mt Rainier on some days as well as to Beaverton; take Bus 51 [Vista]; the Bus driver often feels himself as an informal Portland guide; tell him that you are visiting and he even might stop for you at nice viewpoints to take pictures.
    [Show full text]
  • Landscaping at the Water's Edge
    LANDSCAPING/GARDENING/ECOLOGY No matter where you live in New Hampshire, the actions you take in your landscape can have far-reaching effects on water quality. Why? Because we are all connected to the water cycle and we all live in a watershed. A watershed is the LANDSCAPING land area that drains into a surface water body such as a lake, river, wetland or coastal estuary. at the Water’sAN ECOLOGICAL APPROACHEdge LANDSCAPING Landscaping at the Water’s Edge is a valuable resource for anyone concerned with the impact of his or her actions on the environment. This book brings together the collective expertise of many UNH Cooperative Extension specialists and educators and an independent landscape designer. Unlike many garden design books that are full of glitz and glamour but sorely lacking in substance, this affordable book addresses important ecological issues and empowers readers by giving an array of workable at the Water’s Edge solutions for real-world situations. ~Robin Sweetser, Concord Monitor columnist, garden writer for Old Farmer’s Almanac, and NH Home Magazine Landscaping at the Water’s Edge provides hands-on tools that teach us about positive change. It’s an excellent resource for the gardener, the professional landscaper, designer, and landscape architect—to learn how to better dovetail our landscapes with those of nature. ~Jon Batson, President, NH Landscape Association Pictured here are the : A major river watersheds in N ECOLOGICAL APPROACH New Hampshire. This guide explains how our landscaping choices impact surface and ground waters and demonstrates how, with simple observation, ecologically based design, and low impact maintenance practices, you can protect, and even improve, the quality of our water resources.
    [Show full text]
  • Louvicourt Tailings Storage Facility And
    REPORT Louvicourt Mine Tailings Storage Facility and Polishing Pond Tailings Storage Facility Annual Inspection Submitted to: Morgan Lypka, P.Eng. Teck Resources Ltd. 601 Knighton Road, Kimberley, BC V1A 3E1 Submitted by: Golder Associates Ltd. 7250, rue du Mile-End, 3e étage Montréal (Québec) H2R 3A4 Canada +1 514 383 0990 001-20145710-3000-RA-Rev0 April 2, 2021 April 2, 2021 001-20145710-3000-RA-Rev0 Distribution List 1 e-copy: Teck Resources Ltd., Kimberley, BC 1 e-copy: Golder Associates Ltd., Saskatoon, SK 1 e-copy: Golder Associates Ltd., Montreal, QC i April 2, 2021 001-20145710-3000-RA-Rev0 Executive Summary This report presents the 2020 tailings storage facility annual inspection (TSFAI) for the tailings storage facility (TSF) and polishing pond at the closed Louvicourt mine site located near Val-d’Or, Quebec. This report was prepared based on a site visit carried out on August 17, 2020 by Laurent Gareau and Nicolas Pepin of Golder Associates Ltd (Golder), Morgan Lypka and Jonathan Charland of Teck Resources Limited (Teck, Owner) as well as on a review of available data representative of conditions over the period since the previous annual TSFAI. Golder Associates are the original designer of the facility and have been the provider of the Engineer of Record (EOR) since 2017. Golder performed an inspection in 2009, and then has performed annual inspections of the facilities since 2014. Laurent Gareau assumed the role of EOR for the Louvicourt tailings facility in 2018. The objective of the site visit component of a TSFAI for any such facility is to observe the physical condition of the structures of the facility and look for any signs of changing geotechnical performance such as settlement, bulging, cracking, erosion, seepage and piping.
    [Show full text]
  • Exhibit Specimen List FLORIDA SUBMERGED the Cretaceous, Paleocene, and Eocene (145 to 34 Million Years Ago) PARADISE ISLAND
    Exhibit Specimen List FLORIDA SUBMERGED The Cretaceous, Paleocene, and Eocene (145 to 34 million years ago) FLORIDA FORMATIONS Avon Park Formation, Dolostone from Eocene time; Citrus County, Florida; with echinoid sand dollar fossil (Periarchus lyelli); specimen from Florida Geological Survey Avon Park Formation, Limestone from Eocene time; Citrus County, Florida; with organic layers containing seagrass remains from formation in shallow marine environment; specimen from Florida Geological Survey Ocala Limestone (Upper), Limestone from Eocene time; Jackson County, Florida; with foraminifera; specimen from Florida Geological Survey Ocala Limestone (Lower), Limestone from Eocene time; Citrus County, Florida; specimens from Tanner Collection OTHER Anhydrite, Evaporite from early Cenozoic time; Unknown location, Florida; from subsurface core, showing evaporite sequence, older than Avon Park Formation; specimen from Florida Geological Survey FOSSILS Tethyan Gastropod Fossil, (Velates floridanus); In Ocala Limestone from Eocene time; Barge Canal spoil island, Levy County, Florida; specimen from Tanner Collection Echinoid Sea Biscuit Fossils, (Eupatagus antillarum); In Ocala Limestone from Eocene time; Barge Canal spoil island, Levy County, Florida; specimens from Tanner Collection Echinoid Sea Biscuit Fossils, (Eupatagus antillarum); In Ocala Limestone from Eocene time; Mouth of Withlacoochee River, Levy County, Florida; specimens from John Sacha Collection PARADISE ISLAND The Oligocene (34 to 23 million years ago) FLORIDA FORMATIONS Suwannee
    [Show full text]
  • Flood Hazard of Dunedin's Urban Streams
    Flood hazard of Dunedin’s urban streams Review of Dunedin City District Plan: Natural Hazards Otago Regional Council Private Bag 1954, Dunedin 9054 70 Stafford Street, Dunedin 9016 Phone 03 474 0827 Fax 03 479 0015 Freephone 0800 474 082 www.orc.govt.nz © Copyright for this publication is held by the Otago Regional Council. This publication may be reproduced in whole or in part, provided the source is fully and clearly acknowledged. ISBN: 978-0-478-37680-7 Published June 2014 Prepared by: Michael Goldsmith, Manager Natural Hazards Jacob Williams, Natural Hazards Analyst Jean-Luc Payan, Investigations Engineer Hank Stocker (GeoSolve Ltd) Cover image: Lower reaches of the Water of Leith, May 1923 Flood hazard of Dunedin’s urban streams i Contents 1. Introduction ..................................................................................................................... 1 1.1 Overview ............................................................................................................... 1 1.2 Scope .................................................................................................................... 1 2. Describing the flood hazard of Dunedin’s urban streams .................................................. 4 2.1 Characteristics of flood events ............................................................................... 4 2.2 Floodplain mapping ............................................................................................... 4 2.3 Other hazards ......................................................................................................
    [Show full text]
  • Landforms & Bodies of Water
    Name Date Landforms & Bodies of Water - Vocab Cards hill noun a raised area of land smaller than a mountain. We rode our bikes up and down the grassy hill. Use this word in a sentence or give an example Draw this vocab word or an example of it: to show you understand its meaning: island noun a piece of land surrounded by water on all sides. Marissa's family took a vacation on an island in the middle of the Pacific Ocean. Use this word in a sentence or give an example Draw this vocab word or an example of it: to show you understand its meaning: 1 lake noun a large body of fresh or salt water that has land all around it. The lake freezes in the wintertime and we go ice skating on it. Use this word in a sentence or give an example Draw this vocab word or an example of it: to show you understand its meaning: landform noun any of the earth's physical features, such as a hill or valley, that have been formed by natural forces of movement or erosion. I love canyons and plains, but glaciers are my favorite landform. Use this word in a sentence or give an example Draw this vocab word or an example of it: to show you understand its meaning: 2 mountain noun a land mass with great height and steep sides. It is much higher than a hill. Someday I'm going to hike and climb that tall, steep mountain. Synonyms: peak Use this word in a sentence or give an example Draw this vocab word or an example of it: to show you understand its meaning: ocean noun a part of the large body of salt water that covers most of the earth's surface.
    [Show full text]
  • South Fox Meadow Drainage Improvement Project
    VILLAGE OF SCARSDALE WESTCHESTER COUNTY, NEW YORK COMPREHENSIVE STORM WATER MANAGEMENT SOUTH FOX MEADOW STORMWATER IMPROVEMENT PROJECT In association with WESTCHESTER COUNTY FLOOD MITIGATION PROGRAM Rob DeGiorgio, P.E., CPESC, CPSWQ The Bronx River Watershed Fox Meadow Brook Bronx River Watershed Area in Westchester 48.3 square miles (30,932 acres) 15 Sub-watersheds Percent of undeveloped land in the Watershed 3.3% (0.8 acres in Fox Meadow Brook (FMB) FMB watershed) 928 acres (5.7% of watershed) Bronx River Watershed Fox Meadow Brook George Field Park High School Duck Pond Project Philosophy and Goals •Provide flood mitigation within the Fox Meadow Brook Drainage Basin. •Reduce peak run off rates in the Bronx River Watershed through dry detention storage. •Rehabilitate and preserve natural landscapes and wetlands through invasive species management and re- construction. •Improve water quality. • Petition for and obtain County grant funding to subsidize the project. Village of Scarsdale Fox Meadow Brook Watershed SR-2 BR-4 SR-3 BR-7 BR-8 SR-5 Village of Scarsdale History •In 2009 the Village completed a Comprehensive Storm Water Management Plan. •Critical Bronx River sub drainage basin areas identified inclusive of Fox Meadow Brook (BR-4, BR-7, BR-8). •26 Capital Improvement Projects were identified, several of which comprise the Fox Meadow Detention Improvement Project. •Project included in Village’s Capital Budget. •Project has been reviewed by the NYS DEC. •NYS EFC has approved financing for the project granting Scarsdale a 50% subsidy for their local share of the costs. Village of Scarsdale Site Locations – 7 Segments 7 Project Segments 1.
    [Show full text]
  • Classifying Rivers - Three Stages of River Development
    Classifying Rivers - Three Stages of River Development River Characteristics - Sediment Transport - River Velocity - Terminology The illustrations below represent the 3 general classifications into which rivers are placed according to specific characteristics. These categories are: Youthful, Mature and Old Age. A Rejuvenated River, one with a gradient that is raised by the earth's movement, can be an old age river that returns to a Youthful State, and which repeats the cycle of stages once again. A brief overview of each stage of river development begins after the images. A list of pertinent vocabulary appears at the bottom of this document. You may wish to consult it so that you will be aware of terminology used in the descriptive text that follows. Characteristics found in the 3 Stages of River Development: L. Immoor 2006 Geoteach.com 1 Youthful River: Perhaps the most dynamic of all rivers is a Youthful River. Rafters seeking an exciting ride will surely gravitate towards a young river for their recreational thrills. Characteristically youthful rivers are found at higher elevations, in mountainous areas, where the slope of the land is steeper. Water that flows over such a landscape will flow very fast. Youthful rivers can be a tributary of a larger and older river, hundreds of miles away and, in fact, they may be close to the headwaters (the beginning) of that larger river. Upon observation of a Youthful River, here is what one might see: 1. The river flowing down a steep gradient (slope). 2. The channel is deeper than it is wide and V-shaped due to downcutting rather than lateral (side-to-side) erosion.
    [Show full text]