Two Deep-Mantle Sources for Paleocene Doming and Volcanism in the North Atlantic

Total Page:16

File Type:pdf, Size:1020Kb

Two Deep-Mantle Sources for Paleocene Doming and Volcanism in the North Atlantic Two deep-mantle sources for Paleocene doming and volcanism in the North Atlantic Petar Glišovic(Петар Глишовић)a,1 and Alessandro M. Forteb aGeotop, Université du Québec à Montréal, Montréal, QC, Canada H3C 3P8; and bDepartment of Geological Sciences, University of Florida, Gainesville, FL 32603 Edited by Barbara A. Romanowicz, University of California, Berkeley, CA, and approved May 20, 2019 (received for review September 19, 2018) The North Atlantic Igneous Province (NAIP) erupted in two major extent of the mantle and thus allows us to obtain explicit links pulses that coincide with the continental breakup and the opening between mantle dynamics and emplacement of the NAIP. To of the North Atlantic Ocean over a period from 62 to 54 Ma. The date, it has been mostly assumed that this mantle dynamic con- unknown mantle structure under the North Atlantic during the nection could be entirely modeled in terms of a mantle plume Paleocene represents a major missing link in deciphering the geo- under the ancestral Iceland hotspot. As we show below, there is an dynamic causes of this event. To address this outstanding challenge, equally important upwelling below the ancestral Azores hotspot we use a back-and-forth iterative method for time-reversed global that is a major contributor to North Atlantic surface topography convection modeling over the Cenozoic Era which incorporates and mantle melting in the Paleocene and Eocene. models of present-day tomography-based mantle heterogeneity. We find that the Paleocene mantle under the North Atlantic is Validating Backward Convection Solutions characterized by two major low-density plumes in the lower mantle: Before embarking on a detailed consideration of the recon- one beneath Greenland and another beneath the Azores. These structed evolution of mantle heterogeneity under the North strong lower-mantle upwellings generate small-scale hot upwellings Atlantic, it is important to verify its reliability and geodynamic and cold downwellings in the upper mantle. The upwellings are consistency. A detailed discussion of this verification is presented dispersed sources of magmatism and topographic uplift that were in SI Appendix and we summarize here the main points. active on the rifted margins of the North Atlantic during the In the first test, when the reconstructed mantle heterogeneity formation of the NAIP. While most studies of the Paleocene evolution at 70 Ma is used as the starting model for a convection simula- EARTH, ATMOSPHERIC, of the North Atlantic have focused on the proto-Icelandic plume, our tion integrated forward to the present day, we obtain strong AND PLANETARY SCIENCES Cenozoic reconstructions reveal the equally important dynamics of a correlations to present-day heterogeneity given by the global hot, buoyant, mantle-wide upwelling below the Azores. tomography models (SI Appendix, Fig. S1). This test also dem- onstrates that mantle evolution is sensitive to the differences in mantle plumes | North Atlantic Igneous Province | time-reversed mantle radial viscosity variations (SI Appendix, Fig. S2A), and the V2 convection viscosity model (12) yields the highest global correlation to the tomography models. he Paleocene separation of Greenland from northwest In the second test, we verify whether the present-day hetero- TEurope and from North America is closely linked to the geneities predicted by the (forwardly integrated) reconstructions at massive outburst of igneous activity (the total crustal volume is 70 Ma yield a fit to a wide range of convection-related datasets that ∼6.6 × 106 km3; ref. 1) that is now deposited in a region that includes Baffin Island, the western and eastern margins of Significance Greenland, the mid-Norwegian margin, the Faeroe Islands, and the British Isles (2, 3). It has been hypothesized that this volca- nism played a role in triggering the Paleocene–Eocene Thermal A vigorous debate has raged over the past decades on the Maximum (4, 5). The emplacement of the North Atlantic Igne- mantle plume origin of the North Atlantic Igneous Province ous Province (NAIP) occurred in two main events (5, 6), phase 1 (NAIP). This debate has persisted for such a long time because magmatism (∼62 to 59 Ma) and phase 2 magmatism (∼56.5 to the 3D structure of the mantle under the North Atlantic during 54 Ma). These phases are most often thought to be linked to the the Cenozoic was, until now, unknown. This paper presents emergence of anomalously hot structure inside the stretched and thermodynamically consistent tomography-based reconstruc- tions of two deeply seated hot mantle upwellings (plumes) rifted lithosphere produced by a plume that is now centered under Greenland and the Azores whose evolution is tracked beneath the present-day position of the Iceland hotspot (2, 3, 6). A from 70 Ma to the present day. We show how these dual up- recent appraisal of NAIP geochronological data suggests that re- wellings gave rise to the small-scale mantle melt sources and gional volcanism progressed without significant pauses and that topographic changes of the NAIP. We believe that this discov- associated magmatic activity continued until about 20 Ma (7). It ery will contribute to resolving the long-standing debate on has been also suggested that the dispersed distribution of NAIP the origin of the NAIP. created in several discrete events requires the presence of either another mantle plume (8), south of the Iceland hotspot (9), or Author contributions: P.G. and A.M.F. designed research; P.G. performed research; P.G. multiple phases of mantle upwelling (6). While the mantle-plume and A.M.F. analyzed data; and P.G. and A.M.F. wrote the paper. hypothesis is considered a viable candidate for explaining the The authors declare no conflict of interest. NAIP petrogenesis (10), there are a number of competing theories This article is a PNAS Direct Submission. and models, including delamination, meteorite impact, small-scale Published under the PNAS license. rift-related convection, and melting of a fertile mantle (a review Data deposition: All codes and data reported in this paper have been deposited in the may be found in ref. 11). Here we apply a recently developed data Geotop, Research Centre on the Dynamics of the Earth System, Université du Québec à assimilation method that yields a quantitative geophysical re- Montréal (https://www.geotop.ca/en/recherche/donnees/geophysique/manteau). construction of the Cenozoic evolution of 3D thermal structure 1To whom correspondence may be addressed. Email: [email protected]. below the North Atlantic employing a tomography-based mantle This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. convection model. This modeling provides a detailed spatiotem- 1073/pnas.1816188116/-/DCSupplemental. poral mapping of 3D thermal anomalies that span the entire depth Published online June 13, 2019. www.pnas.org/cgi/doi/10.1073/pnas.1816188116 PNAS | July 2, 2019 | vol. 116 | no. 27 | 13227–13232 Downloaded by guest on October 1, 2021 constrain the 3D density structure and dynamics of the mantle (SI plumes is resolved in all tomography-based flow predictions tested Appendix,TableS1). This test shows (perhaps not surprisingly) that here and that they remain active today (SI Appendix,Fig.S5). mantle reconstructions based on the joint (seismic–geodynamic) At 55 Ma, strong low-density anomalies (δρ/ρ < −0.2%) and tomography models yield the best overall fits to the present-day high vertical flow rates spanned the upper half of the mantle geodynamic constraints. (depth < 1,445 km) below the Azores hotspot and below a region On the basis of these tests, in the following discussion we will extending from South Greenland (SG) to the Iceland hotspot mainly focus on mantle reconstructions obtained with the V2 (Fig. 1B). The upwelling below the Azores hotspot injects a large viscosity and GyPSuM tomography model (13). The predictions volume of hot material in the upper mantle that is directed to- obtained with the other tomography models are nonetheless im- ward the north and west (SI Appendix, Fig. S4 A and B). This portant and for this reason we included them in cluster analyses of finding suggests the “Azores plume” was a major contributor to predicted vertical flow (SI Appendix) and mantle melting predic- the NAIP, along with the SG upwelling (Fig. 1B). About 10° east – C tions (presented below). Furthermore, the reconstructed mantle from the Iceland hotspot, the west east cross-section (Fig. 1 ) evolution under the North Atlantic obtained with the S40RTS shows an additional low-density anomaly and localized upwelling tomography model (14) is shown in SI Appendix,Fig.S3. in the upper mantle beneath the nascent North Atlantic ridge. This same cross-section shows that the deeply rooted Greenland Reconstruction of Paleocene Mantle Flow Under the North plume under the ancestral Iceland hotspot appears to be located Atlantic at the confluence of two large-scale convection rolls below the Maps of the reconstructed Paleocene mantle flow show an up- North American and Eurasian plates. We note that our re- welling below Greenland characterized by a locus of maximum construction of mantle structure and flow at 55 Ma also reveals a ′′ localized upper-mantle upwelling beneath Ireland and Scotland vertical flow that emerges from the D layer below the northern D portion of Greenland and shifts southward at shallower depths (Fig. 1 ) located in the eastern margin of the NAIP (4). A comparison of the Iceland plume reconstructions obtained before impacting the lithosphere mostly below the Greenland SI Appendix margins (Fig. 1 and SI Appendix,Fig.S4A and B). The north– with the GyPSuM and S40RTS tomography models ( , Fig. S3) shows that even though the latter provides a less strong southaxisofthiselongated“Greenland upwelling” or “plume” is expression in the deep mantle, the Cenozoic evolution of this plume centered under the ancestral Iceland hotspot (Fig.
Recommended publications
  • Volcanic Ash Over Europe During the Eruption of Eyjafjallajökull on Iceland, April–May 2010 In: Atmospheric Environment (2011) Elsevier
    Final Draft of the original manuscript: Langmann, B.; Folch, A.; Hensch, M.; Matthias, V.: Volcanic ash over Europe during the eruption of Eyjafjallajökull on Iceland, April–May 2010 In: Atmospheric Environment (2011) Elsevier DOI: 10.1016/j.atmosenv.2011.03.054 1 Volcanic ash over Europe during the eruption of Eyjafjallajökull on Iceland, 2 April-May 2010 3 4 Baerbel Langmann1), Arnau Folch2), Martin Hensch3) and Volker Matthias4) 5 6 1) Institute of Geophysics, University of Hamburg, KlimaCampus, Hamburg, Germany, 7 e-mail: [email protected] 8 2) Barcelona Supercomputing Center - Centro Nacional de Supercomputación, Barcelona, 9 Spain, e-mail: [email protected] 10 3) Nordic Volcanological Center, University of Iceland, Reykjavik, Iceland, e-mail: 11 [email protected] 12 4) Institute of Coastal Research, Helmholtz-Zentrum Geesthacht, Geesthacht, Germany, 13 e-mail: [email protected] 14 15 Abstract 16 During the eruption of Eyjafjallajökull on Iceland in April/May 2010, air traffic over Europe 17 was repeatedly interrupted because of volcanic ash in the atmosphere. This completely 18 unusual situation in Europe leads to the demand of improved crisis management, e.g. 19 European wide regulations of volcanic ash thresholds and improved forecasts of theses 20 thresholds. However, the quality of the forecast of fine volcanic ash concentrations in the 21 atmosphere depends to a great extent on a realistic description of the erupted mass flux of fine 22 ash particles, which is rather uncertain. Numerous aerosol measurements (ground based and 23 satellite remote sensing, and in situ measurements) all over Europe have tracked the volcanic 24 ash clouds during the eruption of Eyjafjallajökull offering the possibility for an 25 interdisciplinary effort between volcanologists and aerosol researchers to analyse the release 26 and dispersion of fine volcanic ash in order to better understand the needs for realistic 27 volcanic ash forecasts.
    [Show full text]
  • Insights from the P Wave Travel Time Tomography in the Upper Mantle Beneath the Central Philippines
    remote sensing Article Insights from the P Wave Travel Time Tomography in the Upper Mantle Beneath the Central Philippines Huiyan Shi 1 , Tonglin Li 1,*, Rui Sun 2, Gongbo Zhang 3, Rongzhe Zhang 1 and Xinze Kang 1 1 College of Geo-Exploration Science and Technology, Jilin University, No.938 Xi Min Zhu Street, Changchun 130026, China; [email protected] (H.S.); [email protected] (R.Z.); [email protected] (X.K.) 2 CNOOC Research Institute Co., Ltd., Beijing 100028, China; [email protected] 3 State Key Laboratory of Geodesy and Earth’s Dynamics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; [email protected] * Correspondence: [email protected] Abstract: In this paper, we present a high resolution 3-D tomographic model of the upper mantle obtained from a large number of teleseismic travel time data from the ISC in the central Philippines. There are 2921 teleseismic events and 32,224 useful relative travel time residuals picked to compute the velocity structure in the upper mantle, which was recorded by 87 receivers and satisfied the requirements of teleseismic tomography. Crustal correction was conducted to these data before inversion. The fast-marching method (FMM) and a subspace method were adopted in the forward step and inversion step, respectively. The present tomographic model clearly images steeply subduct- ing high velocity anomalies along the Manila trench in the South China Sea (SCS), which reveals a gradual changing of the subduction angle and a gradual shallowing of the subduction depth from the north to the south.
    [Show full text]
  • Iceland Is Cool: an Origin for the Iceland Volcanic Province in the Remelting of Subducted Iapetus Slabs at Normal Mantle Temperatures
    Iceland is cool: An origin for the Iceland volcanic province in the remelting of subducted Iapetus slabs at normal mantle temperatures G. R. Foulger§1 & Don L. Anderson¶ §Department of Geological Sciences, University of Durham, Science Laboratories, South Rd., Durham, DH1 3LE, U.K. ¶California Institute of Technology, Seismological Laboratory, MC 252-21, Pasadena, CA 91125, U. S. A. Abstract The time-progressive volcanic track, high temperatures, and lower-mantle seismic anomaly predicted by the plume hypothesis are not observed in the Iceland region. A model that fits the observations better attributes the enhanced magmatism there to the extraction of melt from a region of upper mantle that is at relatively normal temperature but more fertile than average. The source of this fertility is subducted Iapetus oceanic crust trapped in the Caledonian suture where it is crossed by the mid-Atlantic ridge. The extraction of enhanced volumes of melt at this locality on the spreading ridge has built a zone of unusually thick crust that traverses the whole north Atlantic. Trace amounts of partial melt throughout the upper mantle are a consequence of the more fusible petrology and can explain the seismic anomaly beneath Iceland and the north Atlantic without the need to appeal to very high temperatures. The Iceland region has persistently been characterised by complex jigsaw tectonics involving migrating spreading ridges, microplates, oblique spreading and local variations in the spreading direction. This may result from residual structural complexities in the region, inherited from the Caledonian suture, coupled with the influence of the very thick crust that must rift in order to accommodate spreading-ridge extension.
    [Show full text]
  • A Synthesis of Tectonically-Related Stratigraphy in the North Atlantic-Arctic Region from Aalenian to Cenomanian Time
    A synthesis of tectonically-related stratigraphy in the North Atlantic-Arctic region from Aalenian to Cenomanian time VIDAR BERGO LARSEN Larsen, V. B.: A synthesis of tectonically-related stratigraphy in the North Atlantic-Arctic region from Aalenian to Cenomanian time. Norsk Geologisk Tidsskrift, Vol. 67, pp. 281-293. Oslo 1987. ISSN 0029- 196X. The stratigraphic evolution in the North Atlantic-Arctic region from Aalenian (187 Ma) to Cenomanian (97 Ma) time is described in relation to four tectonic phases. Thefirst two are related to the failed attempt of the opening of the North Atlantic in Jurassic time. Rift basins formed as a response to extensional forces associated with a clockwise rotation of the North American (Laurentian)/Greenland plate and a clockwise rotation of the African plate during the opening of the Tethys. Regional uplift is suggested north of the northward migrating pivot point in the North Atlantic, with responding diachronous development of fan delta sedimentation. The last two phases are related to the slightly anticlockwise rotation of the Greenland plate giving rise to compressional tectonics and uplift along many basins within the region in Neocomian time (Phase III), while extensional tectonics dominated when further rotation and northwest migration of the Greenland plate proceeded in Aptian-Albian time (Phase IV). The stratigraphic evolution within the individual basins ftanking the North Atlantic and the Norwegian­ Greenland Sea is to a certain degree different, but nevertheless reftects the paleopositions of the basins within the plate tectonic framework through time. One basin may reftect compression and uplift in the same time span (Tectonic Phase) as another basin may be within an extensional regime,i.e.
    [Show full text]
  • MANTLE PLUMES and FLOOD BASALTS Scribedblob of Uniformtemperature, Rather Than Resultingfrom Startsat the Paranaflood Basalt Province,South America
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Memorial University Research Repository JOURNALOF GEOPHYSICAL RESEARCH, VOL. 106, NO. B2, PAGES 2047-2059, FEBRUARY 10, 2001 Mantleplumes and flood basalts: Enhanced melting fromplume ascent and an eclogitecomponent A.M. Leitch•, andG. F.Davies ResearchSchool of EarthSciences, Australian National University, Canberra, ACT Abstract.New numerical models of startingplumes reproduce the observed volumes and rates of floodbasalt eruptions, even for a plumeof moderatetemperature arriving under thick lithosphere. Thesemodels follow the growth of a newplume from a thermalboundary layer and its subsequent risethrough the mantle viscosity structure. They show that as a plumehead rises into the lower- viscosityupper mantle it narrows,and it isthus able to penetrate rapidly right to thebase of litho- sphere,where it spreadsas a thinlayer. This behavior also brings the hottest plume matehal to the shallowestdepths. Both factors enhance melt production compared with previous plume models. Themodel plumes are also assumed to containeclogite bodies, inferred from geochemistry to be recycledoceanic crust. Previous numerical models have shown that the presence of nonreacting eclogitebodies may greatly enhance melt production. it hasbeen argued that the eclogite-derived meltwould react with surroundingperidotite and refreeze; however, recent experimental studies indicatethat eclogite-derived melts may have reached the Earth's surface with onlymoderate or evenminor
    [Show full text]
  • Paleocene Alkaline Volcanism in the Nares Strait Region Related to Strike-Slip Tectonics
    Paleocene Alkaline Volcanism in the Nares Strait Region Related to Strike-slip Tectonics Solveig Estrada & Detlef Damaske Federal Institute for Geosciences and Natural Resources (BGR), Hannover, Germany ([email protected]) The tectonic development of the North Atlantic, the Labrador Sea/Baffin Bay and the Eurasian Basin of Arctic Ocean led to relative movements between the Greenland Plate and the North American Plate. There has been a debate for many years, whether the Nares Strait between northwest Greenland and Ellesmere Island marks an ancient plate boundary in terms of a left-lateral transform fault (Wegener Fault) or whether there was no movement between Greenland and Ellesmere Island at all. New data were acquired during joint German-Canadian geological field work on northeast Ellesmere Island 1998-2000 (Mayr 2008), followed in 2001 by a geoscience cruise in Nares Strait (Tessensohn et al. 2006). Indications for sinistral strike-slip movements followed by compressive tectonics were found at the western margin of northern Nares Strait (Saalmann et al. 2005). Paleogene basins on Judge Daly Promontory, northeast Ellesmere Island, are bounded by a complex pattern of strike-slip and thrust faults. The clastic sediments in the basins are rich in volcanogenic material. Volcanic pebbles within the Cape Back basin near Nares Strait are derived from lava flows and ignimbrites of a continental rift-related, strongly differentiated, highly incompatible element enriched, alkaline volcanic suite (Estrada et al. 2009). 40Ar/39Ar amphibole and alkali feldspar ages indicate that volcanism was active around 61–58 Ma and was probably contemporaneous with sedimentation within the Paleogene pull-apart basins on Judge Daly Promontory formed by sinistral strike-slip tectonics parallel to the present-day Nares Strait.
    [Show full text]
  • Mantle Plumes and Intraplate Volcanism Volcanism on the Earth
    Mantle Plumes and Intraplate Volcanism Origin of Oceanic Island Volcanoes EAS 302 Lecture 20 Volcanism on the Earth • Mid-ocean ridges (>90% of the volcanism) – “constructive” plate margins • Subduction-related (much of the rest) – “destructive plate” margins • Volcanism in plate interiors (usually) – , e.g., Yellowstone, Hawaii not explained by the plate tectonic paradigm. Characteristics of Intra-plate Volcanoes • Not restricted to plate margins. • Occur at locations that are stationary relative to plate motions, “hot spots”(pointed out by J. T. Wilson, 1963). • Distinctive isotopic and trace element composition. Hot Spot Traces on the Pacific Ocean Floor The Mantle Plume Model • “ Hot spot” volcanoes are manifestations of mantle plumes: columns of hot rock rising buoyantly from the deep mantle – This idea proposed by W. J. Morgan in 1971. • Evidence – Maintain (almost) fixed positions relative to each other; i.e., they are not affected by plate motions – A number of “hot spots” are associated with “swells”, indicative of hot mantle below – Their magmas are compositionally distinct from mid-ocean ridge basalts and therefore must be derived from a different part of the mantle Current Mantle Plumes The Hawaiian Mantle Plume Age of Hawaiian Volcanism The Hawaiian “Swell” Plumes at the surface • In the last 100-200 km, the plume begins to melt. • Once it reaches the base of the lithosphere, it can no longer rise and spreads out. Isotopic Compositions of Oceanic Island Basalts • Nd and Sr isotope ratios 12 DMM distinct from MORB: 10 derived from separate MORB 8 reservoir which is less 6 depleted (and Society ε Nd 4 sometimes enriched) in HIMU incompatible elements.
    [Show full text]
  • Volcanism in a Plate Tectonics Perspective
    Appendix I Volcanism in a Plate Tectonics Perspective 1 APPENDIX I VOLCANISM IN A PLATE TECTONICS PERSPECTIVE Contributed by Tom Sisson Volcanoes and Earth’s Interior Structure (See Surrounded by Volcanoes and Magma Mash for relevant illustrations and activities.) To understand how volcanoes form, it is necessary to know something about the inner structure and dynamics of the Earth. The speed at which earthquake waves travel indicates that Earth contains a dense core composed chiefly of iron. The inner part of the core is solid metal, but the outer part is melted and can flow. Circulation (movement) of the liquid outer core probably creates Earth’s magnetic field that causes compass needles to point north and helps some animals migrate. The outer core is surrounded by hot, dense rock known as the mantle. Although the mantle is nearly everywhere completely solid, the rock is hot enough that it is soft and pliable. It flows very slowly, at speeds of inches-to-feet each year, in much the same way as solid ice flows in a glacier. Earth’s interior is hot both because of heat left over from its formation 4.56 billion years ago by meteorites crashing together (accreting due to gravity), and because of traces of natural radioactivity in rocks. As radioactive elements break down into other elements, they release heat, which warms the inside of the Earth. The outermost part of the solid Earth is the crust, which is colder and about ten percent less dense than the mantle, both because it has a different chemical composition and because of lower pressures that favor low-density minerals.
    [Show full text]
  • The East African Rift System in the Light of KRISP 90
    ELSEVIER Tectonophysics 236 (1994) 465-483 The East African rift system in the light of KRISP 90 G.R. Keller a, C. Prodehl b, J. Mechie b,l, K. Fuchs b, M.A. Khan ‘, P.K.H. Maguire ‘, W.D. Mooney d, U. Achauer e, P.M. Davis f, R.P. Meyer g, L.W. Braile h, 1.0. Nyambok i, G.A. Thompson J a Department of Geological Sciences, University of Texas at El Paso, El Paso, TX 79968-0555, USA b Geophysikalisches Institut, Universitdt Karlwuhe, Hertzstrasse 16, D-76187Karlsruhe, Germany ’ Department of Geology, University of Leicester, University Road, Leicester LEl 7RH, UK d U.S. Geological Survey, Office of Earthquake Research, 345 Middlefield Road, Menlo Park, CA 94025, USA ’ Institut de Physique du Globe, Universite’ de Strasbourg, 5 Rue Ret& Descartes, F-67084 Strasbourg, France ‘Department of Earth and Space Sciences, University of California at Los Angeles, Los Angeles, CA 90024, USA ’ Department of Geology and Geophysics, University of Wuconsin at Madison, Madison, WI 53706, USA h Department of Earth and Atmospheric Sciences, Purdue University, West Lafayette, IN 47907, USA i Department of Geology, University of Nairobi, P.O. Box 14576, Nairobi, Kenya ’ Department of Geophysics, Stanford University, Stanford, CA 94305, USA Received 21 September 1992; accepted 8 November 1993 Abstract On the basis of a test experiment in 1985 (KRISP 85) an integrated seismic-refraction/ teleseismic survey (KRISP 90) was undertaken to study the deep structure beneath the Kenya rift down to depths of NO-150 km. This paper summarizes the highlights of KRISP 90 as reported in this volume and discusses their broad implications as well as the structure of the Kenya rift in the general framework of other continental rifts.
    [Show full text]
  • Full-Text PDF (Final Published Version)
    Pritchard, M. E., de Silva, S. L., Michelfelder, G., Zandt, G., McNutt, S. R., Gottsmann, J., West, M. E., Blundy, J., Christensen, D. H., Finnegan, N. J., Minaya, E., Sparks, R. S. J., Sunagua, M., Unsworth, M. J., Alvizuri, C., Comeau, M. J., del Potro, R., Díaz, D., Diez, M., ... Ward, K. M. (2018). Synthesis: PLUTONS: Investigating the relationship between pluton growth and volcanism in the Central Andes. Geosphere, 14(3), 954-982. https://doi.org/10.1130/GES01578.1 Publisher's PDF, also known as Version of record License (if available): CC BY-NC Link to published version (if available): 10.1130/GES01578.1 Link to publication record in Explore Bristol Research PDF-document This is the final published version of the article (version of record). It first appeared online via Geo Science World at https://doi.org/10.1130/GES01578.1 . Please refer to any applicable terms of use of the publisher. University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ Research Paper THEMED ISSUE: PLUTONS: Investigating the Relationship between Pluton Growth and Volcanism in the Central Andes GEOSPHERE Synthesis: PLUTONS: Investigating the relationship between pluton growth and volcanism in the Central Andes GEOSPHERE; v. 14, no. 3 M.E. Pritchard1,2, S.L. de Silva3, G. Michelfelder4, G. Zandt5, S.R. McNutt6, J. Gottsmann2, M.E. West7, J. Blundy2, D.H.
    [Show full text]
  • The Cretaceous of North Greenland
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Zitteliana - Abhandlungen der Bayerischen Staatssammlung für Paläontologie und Histor. Geologie Jahr/Year: 1982 Band/Volume: 10 Autor(en)/Author(s): Birkelund Tove, Hakansson Eckhart Artikel/Article: The Cretaceous of North Greenland - a stratigraphic and biogeographical analysis 7-25 © Biodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.zobodat.at 7 Zitteliana 10 7-25 München, 1. Juli 1983 ISSN 0373-9627 The Cretaceous of North Greenland - a stratigraphic and biogeographical analysis By TOVE BIRKELUND & ECKART HÄKANSSON*) With 6 text figures and 3 plates ABSTRACT Mapping of the Wandel Sea Basin (81-84°N) has revealed realites, Peregrinoceras, Neotollia, Polyptycbites, Astieripty- an unusually complete Late Jurassic to Cretaceous sequence chites) are Boreal and Sub-Boreal, related to forms primarily in the extreme Arctic. The Cretaceous pan of the sequence in­ known from circum-arctic regions (Sverdrup Basin, Svalbard, cludes marine Ryazanian, Valanginian, Aptian, Albian, Tu­ Northern and Western Siberia), but they also have affinities to ranian and Coniacian deposits, as well as outliers of marine occurrences as far south as Transcaspia. The Early Albian Santonian in a major fault zone (the Harder Fjord Fault Zone) contains a mixing of forms belonging to different faunal pro­ west of the main basin. Non-marine PHauterivian-Barremian vinces (e. g. Freboldiceras, Leymeriella, Arctboplites), linking and Late Cretaceous deposits are also present in addition to North Pacific, Atlantic, Boreal/Russian platform and Trans­ Late Cretaceous volcanics. caspian faunas nicely together. Endemic Turonian-Coniacian Scapbites faunas represent new forms related to European An integrated dinoflagellate-ammonite-5«c/;D stratigra­ species.
    [Show full text]
  • Mantle Dynamics and Characteristics of the Azores Plateau
    Earth and Planetary Science Letters 362 (2013) 258–271 Contents lists available at SciVerse ScienceDirect Earth and Planetary Science Letters journal homepage: www.elsevier.com/locate/epsl Mantle dynamics and characteristics of the Azores plateau C. Adam a,n, P. Madureira a,b, J.M. Miranda c, N. Lourenc-o c,d, M. Yoshida e, D. Fitzenz a,1 a Centro de Geofı´sica de E´vora/Univ. E´vora, 7002-554 E´vora, Portugal b Estrutura de Missao~ para a Extensao~ da Plataforma Continental (EMEPC), 2770-047, Pac-o d’ Arcos, Portugal c Instituto Portugues do Mar e da Atmosfera, Lisboa, Portugal d University of Algarve, IDL, Campus de Gambelas, 8000 Faro, Portugal e Institute for Research on Earth Evolution (IFREE), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa 237-0061, Japan article info abstract Article history: Situated in the middle of the Atlantic Ocean, the Azores plateau is a region of elevated topography Received 25 July 2012 encompassing the triple junction between the Eurasian, Nubian and North American plates. The plateau is Received in revised form crossed by the Mid-Atlantic Ridge, and the Terceira Rift is generally thought of as its northern boundary. 2 November 2012 The origin of the plateau and of the Terceira Rift is still under debate. This region is associated with active Accepted 5 November 2012 volcanism. Geophysical data describe complex tectonic and seismic patterns. The mantle under this region Editor: T. Spohn Available online 18 January 2013 is characterized by anomalously slow seismic velocities. However, this mantle structure has not yet been used to quantitatively assess the influence of the mantle dynamics on the surface tectonics.
    [Show full text]