Introduction to Epigenetic Regulation: How Can the Epigenomics Core Services Help Your Research?

Total Page:16

File Type:pdf, Size:1020Kb

Introduction to Epigenetic Regulation: How Can the Epigenomics Core Services Help Your Research? Introduction To Epigenetic Regulation: How Can The Epigenomics Core Services Help Your Research? Maria (Ken) Figueroa, M.D. Core Scientific Director Gene expression depends upon multiple factors Gene Transcription Ch3 Ch3 Ch3 Ch3 DNA Sequence DNA Methylation Histone Modifications GENETIC REGULATION EPIGENETIC REGULATION Genetics and Epigenetics EPIgenetic information .... A T C G .... DNA - genetic information Inherited across generations Transmitted by mother to daughter cells Required for life Comparing genetic and epigenetic codes EPIgenetic code Hundreds of proteins and chemical modifications Cytosine Histone Writer/Reader/Eraser modifications modifications proteins .... A T C G .... DNA - genetic code 4 nucleotides Three layers of epigenetic regulation Cytosine modifications Histone Writer/Reader/Eraser modifications proteins Epigenetic vs Genetic information EPIgenetic information has plasticity .... A T C G .... Genetic information is constant Conception Death Epigenetic plasticity is required for complexity Genetic Content Stem Cell Epigenetic Content Epigenetic plasticity is required for cellular adaptation and reprogramming Genetic Content Cancer Chronic inflammation Response to stress Stem Cell iPSC Differentiation Environmenta l effects Epigenetic Content Epigenomic assays uncover novel biology in cancer Acute Leukemias Gliomas Epigenetic deregulation in non-malignant disorders Epigenetic Content Limitations to studying the epigenome ü Assays can be cumbersome and challenging to set up ü Multiple different assays available and understanding which is the correct assay for your experiment may not be so clear ü Reagents are expensive ü Experiment design can be complicated: e.g. special primers or special biological considerations ü Data analysis is not standard Epigenomics Core Central Aims 1) Provide consultation services to assist in the experimental design of epigenetic studies, including assistance with platform selection, primer design and experimental setup. 2) Provide next generation sequencing methods to study the distribution of cytosine modification (5mC and 5hmC) and histone modifications in cultured cell lines and primary tissue specimens with limiting cell numbers. 3) Provide state-of-the-art single locus assays for performing cytosine and histone modification studies in restricted number of loci. 4) Provide bioinformatic support for epigenomic data sets, including data processing, quality control assessment, and comparative data analysis between experimental cohorts. Who we are Core Scientific Core Bioinformatics Director: Director “Ken” Figueroa M.D Maureen Sartor Ph.D. Core Manager Computational biologist: Claudia Lalancette Ph.D. Ana Rodrigues Ph.D. Benefits that investigators will derive from using the core. 1. Access to experiments that are otherwise restricted to a small group of specialized labs 2. Reduced cost of sample processing 3. Integrated service including: II. Assistance with assay and experimental design III. Library preparation IV. Raw data of guaranteed quality or repeated for free V. Bioinformatic support for data processing and comparative analysis Epigenetic Assays Genome-wide and site-specific Cytosine methylation and hydroxymethylation Cytosine modifications Genome-wide Writer/Reader/Eraser distribution of histone proteins Histone and epigenetic modifications modifier Services provided A) Genome-wide DNA methylation: -WGBS, ERRBS, meDIP-seq, Illumina Infinium arrays B) Genome-wide DNA hydroxymethylation: -hmeDIP-seq C) Genome-wide histone modifications - ChIP-seq library preparation - Coming soon: N-ChIP for a panel of validated histone Abs D) Single-locus quantitative DNA methylation - MassARRAY EpiTYPER or Pyrosequencing E) Bioinformatic services for epigenomic data sets - Data QC included in all services - Fee-for-service: Data processing, biological comparisons, integration with publicly available or user-generated datasets Bisulfite Conversion of modified cytosines CONVERSION DEAMINATION DESULPHONATION (or 5-hydroxymethylcytosine) Bisulfite Conversion creates a C/T SNP Creates a C/T SNP that can be: 1- distinguished through sequencing 2- Amplified differentially through different primer pairs 3- Digested differentially through specific RE 4- Differential hybridization on C/T SNP array (Illumina) The 5hmC dilemma • 5hmC is resistant to deamination by sodium bisulfite à cannot be distinguished from mC • 5hmC is present in varying quantities in different tissues à high in ESCs and brain tissue • Most tissues have very low quantities à affinity-based methods require a lot of input DNA for successful library prep • HOWEVER, 5hmC is not simply an intermediary step in DNA demethylation and plays a role in transcriptional regulation 5-methylcytosine 5-hydroxymethylcytosine Choosing the right assay Specific CpGs or regional Genome-wide information? vs. single/few Cost loci restrictions? What assay is best for me? 5mC or 5hmC? Limited cell Histones? numbers/ DNA? DNA quality: good or poor? Bisulfite-based methods Advantages: 1. Have base-pair resolution 2. Can offer precise quantification (% methylation) Limitations: 1. Can have false positives due to incomplete conversion of unmethylated Cs 2. Does not distinguish mC from 5hmC 3. Requires very high quality DNA (bisulfite degrades DNA) 4. Bisulfite treated DNA is unstable and can’t be stored 5. Bisulfite treatment further degrades DNA 6. PCR amplification needs to be very well optimized to amplify both unmethylated DNA and methylated DNA with equal efficiency to avoid false positives for methylation Affinity-based methods Advantages: 1. Can be performed with lower quality DNA 2. Do not depend on cumbersome bisulfite treatment 3. Good antibodies should not cross-react with 5hmC 4. You query the whole genome without requiring to sequence the whole genome Limitations: 1. Do not offer base-pair resolution 2. Are highly dependent on CG content (> affinity for more CG dense regions) 3. Lack of signal may be due to true unmethylated CpGs or to inefficient pulldown (false negatives) 4. Ab-based methods have bad signal-to-noise ratio and variability due to Ab DNA methylation assays Massarray/ WGBS ERRBS mERRBS meDIP-seq Pyroseq. Whole Whole Coverage Few loci ~3-4M CpG. ~3/4M CpGs genome genome Quantitative Yes Yes Yes Yes semi Base-pair res Yes Yes Yes Yes No ¼ -½ for > # of lanes N/A 3 to get >10x 1 for > 10x 1-2 10x Non-CpG N/A Many Very few Very few None reads 10ng/ DNA required 250ng 2.5-25ng 75ng 500ng-1ug amplicon Cost $-$$ $$$-$$$$ $$ $ $$-$$$ Sample Processing Workflow Consultation Request service Assay-specific interview to in iLabs and sample processing design submit samples and library experiment to core preparation Epigenomics core submits samples to DNA sequencing core Deliver Raw/ Data quality control, Sequencing core Processed Data to alignment and analysis delivers raw data to users (if requested) Epigenomics Core Where can you find us? MSRB II 2568 8:30-4:30 research.med.umich.edu/epigenomicscore .
Recommended publications
  • Epigenome Chaos: Stochastic and Deterministic DNA Methylation Events Drive Cancer Evolution
    cancers Review Epigenome Chaos: Stochastic and Deterministic DNA Methylation Events Drive Cancer Evolution Giusi Russo 1, Alfonso Tramontano 2, Ilaria Iodice 1, Lorenzo Chiariotti 1 and Antonio Pezone 1,* 1 Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli “Federico II”, 80131 Naples, Italy; [email protected] (G.R.); [email protected] (I.I.); [email protected] (L.C.) 2 Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; [email protected] * Correspondence: [email protected] or [email protected]; Tel.: +39-081-746-3614 Simple Summary: Cancer is a group of diseases characterized by abnormal cell growth with a high potential to invade other tissues. Genetic abnormalities and epigenetic alterations found in tumors can be due to high levels of DNA damage and repair. These can be transmitted to daughter cells, which assuming other alterations as well, will generate heterogeneous and complex populations. Deciphering this complexity represents a central point for understanding the molecular mechanisms of cancer and its therapy. Here, we summarize the genomic and epigenomic events that occur in cancer and discuss novel approaches to analyze the epigenetic complexity of cancer cell populations. Abstract: Cancer evolution is associated with genomic instability and epigenetic alterations, which contribute to the inter and intra tumor heterogeneity, making genetic markers not accurate to monitor tumor evolution. Epigenetic changes, aberrant DNA methylation and modifications of chromatin proteins, determine the “epigenome chaos”, which means that the changes of epigenetic traits are Citation: Russo, G.; Tramontano, A.; randomly generated, but strongly selected by deterministic events.
    [Show full text]
  • The International Human Epigenome Consortium (IHEC): a Blueprint for Scientific Collaboration and Discovery
    The International Human Epigenome Consortium (IHEC): A Blueprint for Scientific Collaboration and Discovery Hendrik G. Stunnenberg1#, Martin Hirst2,3,# 1Department of Molecular Biology, Faculties of Science and Medicine, Radboud University, Nijmegen, The Netherlands 2Department of Microbiology and Immunology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada V6T 1Z4. 3Canada’s Michael Smith Genome Science Center, BC Cancer Agency, Vancouver, BC, Canada V5Z 4S6 #Corresponding authors [email protected] [email protected] Abstract The International Human Epigenome Consortium (IHEC) coordinates the generation of a catalogue of high-resolution reference epigenomes of major primary human cell types. The studies now presented (cell.com/XXXXXXX) highlight the coordinated achievements of IHEC teams to gather and interpret comprehensive epigenomic data sets to gain insights in the epigenetic control of cell states relevant for human health and disease. One of the great mysteries in developmental biology is how the same genome can be read by cellular machinery to generate the plethora of different cell types required for eukaryotic life. As appreciation grew for the central roles of transcriptional and epigenetic mechanisms in specification of cellular fates and functions, researchers around the world encouraged scientific funding agencies to develop an organized and standardized effort to exploit epigenomic assays to shed additional light on this process (Beck, Olek et al. 1999, Jones and Martienssen 2005, American Association for Cancer Research Human Epigenome Task and European Union 2008). In March 2009, leading scientists and international health research funding agency representatives were invited to a meeting in Bethesda (MD, USA) to gauge the level of interest in an international epigenomics project and to identify potential areas of focus.
    [Show full text]
  • Integrative Analysis for Elucidating Transcriptomics Landscapes of Glucocorticoid-Induced Osteoporosis
    fcell-08-00252 April 13, 2020 Time: 17:59 # 1 ORIGINAL RESEARCH published: 16 April 2020 doi: 10.3389/fcell.2020.00252 Integrative Analysis for Elucidating Transcriptomics Landscapes of Glucocorticoid-Induced Osteoporosis Xiaoxia Ying1†, Xiyun Jin2†, Pingping Wang2†, Yuzhu He1, Haomiao Zhang1, Xiang Ren1, Songling Chai1, Wenqi Fu1, Pengcheng Zhao1, Chen Chen1, Guowu Ma1* and Huiying Liu1* 1 2 Edited by: School of Stomatology, Dalian Medical University, Dalian, China, School of Life Sciences and Technology, Harbin Institute Yongchun Zuo, of Technology, Harbin, China Inner Mongolia University, China Reviewed by: Osteoporosis is the most common bone metabolic disease, characterized by bone Liang Yu, mass loss and bone microstructure changes due to unbalanced bone conversion, Xidian University, China Yanshuo Chu, which increases bone fragility and fracture risk. Glucocorticoids are clinically used to The University of Texas MD Anderson treat a variety of diseases, including inflammation, cancer and autoimmune diseases. Cancer Center, United States However, excess glucocorticoids can cause osteoporosis. Herein we performed an *Correspondence: Guowu Ma integrated analysis of two glucocorticoid-related microarray datasets. The WGCNA [email protected] analysis identified 3 and 4 glucocorticoid-related gene modules, respectively. Differential Huiying Liu expression analysis revealed 1047 and 844 differentially expressed genes in the two [email protected] datasets. After integrating differentially expressed glucocorticoid-related genes, we †These authors have contributed equally to this work found that most of the robust differentially expressed genes were up-regulated. Through protein-protein interaction analysis, we obtained 158 glucocorticoid-related candidate Specialty section: This article was submitted to genes. Enrichment analysis showed that these genes are significantly enriched in the Epigenomics and Epigenetics, osteoporosis related pathways.
    [Show full text]
  • DNA Sequencing and Sorting: Identifying Genetic Variations
    BioMath DNA Sequencing and Sorting: Identifying Genetic Variations Student Edition Funded by the National Science Foundation, Proposal No. ESI-06-28091 This material was prepared with the support of the National Science Foundation. However, any opinions, findings, conclusions, and/or recommendations herein are those of the authors and do not necessarily reflect the views of the NSF. At the time of publishing, all included URLs were checked and active. We make every effort to make sure all links stay active, but we cannot make any guaranties that they will remain so. If you find a URL that is inactive, please inform us at [email protected]. DIMACS Published by COMAP, Inc. in conjunction with DIMACS, Rutgers University. ©2015 COMAP, Inc. Printed in the U.S.A. COMAP, Inc. 175 Middlesex Turnpike, Suite 3B Bedford, MA 01730 www.comap.com ISBN: 1 933223 71 5 Front Cover Photograph: EPA GULF BREEZE LABORATORY, PATHO-BIOLOGY LAB. LINDA SHARP ASSISTANT This work is in the public domain in the United States because it is a work prepared by an officer or employee of the United States Government as part of that person’s official duties. DNA Sequencing and Sorting: Identifying Genetic Variations Overview Each of the cells in your body contains a copy of your genetic inheritance, your DNA which has been passed down to you, one half from your biological mother and one half from your biological father. This DNA determines physical features, like eye color and hair color, and can determine susceptibility to medical conditions like hypertension, heart disease, diabetes, and cancer.
    [Show full text]
  • Epigenome-Wide Association Study (EWAS) on Lipids: the Rotterdam Study Kim V
    Braun et al. Clinical Epigenetics (2017) 9:15 DOI 10.1186/s13148-016-0304-4 RESEARCH Open Access Epigenome-wide association study (EWAS) on lipids: the Rotterdam Study Kim V. E. Braun1, Klodian Dhana1, Paul S. de Vries1,2, Trudy Voortman1, Joyce B. J. van Meurs3,4, Andre G. Uitterlinden1,3,4, BIOS consortium, Albert Hofman1,5, Frank B. Hu5,6, Oscar H. Franco1 and Abbas Dehghan1* Abstract Background: DNA methylation is a key epigenetic mechanism that is suggested to be associated with blood lipid levels. We aimed to identify CpG sites at which DNA methylation levels are associated with blood levels of triglycerides, high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and total cholesterol in 725 participants of the Rotterdam Study, a population-based cohort study. Subsequently, we sought replication in a non-overlapping set of 760 participants. Results: Genome-wide methylation levels were measured in whole blood using the Illumina Methylation 450 array. Associations between lipid levels and DNA methylation beta values were examined using linear mixed-effect models. All models were adjusted for sex, age, smoking, white blood cell proportions, array number, and position on array. A Bonferroni-corrected p value lower than 1.08 × 10−7 was considered statistically significant. Five CpG sites annotated to genes including DHCR24, CPT1A, ABCG1,andSREBF1 were identified and replicated. Four CpG sites were associated with triglycerides, including CpG sites annotated to CPT1A (cg00574958 and cg17058475), ABCG1 (cg06500161), and SREBF1 (cg11024682). Two CpG sites were associated with HDL-C, including ABCG1 (cg06500161) and DHCR24 (cg17901584). No significant associations were observed with LDL-C or total cholesterol.
    [Show full text]
  • EPIGENOMICS: BEYOND Cpg ISLANDS
    REVIEWS EPIGENOMICS: BEYOND CpG ISLANDS Melissa J. Fazzari* and John M. Greally† Epigenomic studies aim to define the location and nature of the genomic sequences that are epigenetically modified. Much progress has been made towards whole-genome epigenetic profiling using molecular techniques, but the analysis of such large and complex data sets is far from trivial given the correlated nature of sequence and functional characteristics within the genome. We describe the statistical solutions that help to overcome the problems with data-set complexity, in anticipation of the imminent wealth of data that will be generated by new genome- wide epigenetic profiling and DNA sequence analysis techniques. So far, epigenomic studies have succeeded in identifying CpG islands, but recent evidence points towards a role for transposable elements in epigenetic regulation, causing the fields of study of epigenetics and transposable element biology to converge. Epigenetic inheritance involves the transmission of issues of correlation and causality — for example, the information not encoded in DNA sequences from cell DNA sequence feature might be the effect of the epige- to daughter cell or from generation to generation. netic process rather than mechanistically involved in Covalent modifications of the DNA or its packaging directing it. As new techniques to characterize epigenetic histones are responsible for transmitting epigenetic processes throughout the genome are being applied, we information. Epigenomics can be defined as a genome- have the potential to generate large amounts of data to wide approach to studying epigenetics. This term facilitate epigenomic studies. It is a good time now to encompasses whole-genome studies of epigenetic consider these issues so that we can design our analytical processes and the identification of the DNA sequences approaches appropriately.
    [Show full text]
  • The Bio Revolution: Innovations Transforming and Our Societies, Economies, Lives
    The Bio Revolution: Innovations transforming economies, societies, and our lives economies, societies, our and transforming Innovations Revolution: Bio The Executive summary The Bio Revolution Innovations transforming economies, societies, and our lives May 2020 McKinsey Global Institute Since its founding in 1990, the McKinsey Global Institute (MGI) has sought to develop a deeper understanding of the evolving global economy. As the business and economics research arm of McKinsey & Company, MGI aims to help leaders in the commercial, public, and social sectors understand trends and forces shaping the global economy. MGI research combines the disciplines of economics and management, employing the analytical tools of economics with the insights of business leaders. Our “micro-to-macro” methodology examines microeconomic industry trends to better understand the broad macroeconomic forces affecting business strategy and public policy. MGI’s in-depth reports have covered more than 20 countries and 30 industries. Current research focuses on six themes: productivity and growth, natural resources, labor markets, the evolution of global financial markets, the economic impact of technology and innovation, and urbanization. Recent reports have assessed the digital economy, the impact of AI and automation on employment, physical climate risk, income inequal ity, the productivity puzzle, the economic benefits of tackling gender inequality, a new era of global competition, Chinese innovation, and digital and financial globalization. MGI is led by three McKinsey & Company senior partners: co-chairs James Manyika and Sven Smit, and director Jonathan Woetzel. Michael Chui, Susan Lund, Anu Madgavkar, Jan Mischke, Sree Ramaswamy, Jaana Remes, Jeongmin Seong, and Tilman Tacke are MGI partners, and Mekala Krishnan is an MGI senior fellow.
    [Show full text]
  • Genomic Sequencing of Infectious Pathogens
    Science, Technology Assessment, MARCH 2021 and Analytics WHY THIS MATTERS Genomic sequencing reveals the genetic code of an infectious disease pathogen, such as SARS-CoV-2, the SCIENCE & TECH SPOTLIGHT: virus that causes COVID-19. Newer, faster, and less costly sequencing can now be used to more quickly track GENOMIC SEQUENCING OF transmission, detect new variants, and develop vaccines and other countermeasures. However, challenges such INFECTIOUS PATHOGENS as high startup costs and privacy concerns remain. /// THE TECHNOLOGY How mature is it? First-generation sequencing is often used to confirm results of NGS. NGS is relatively new to the public health field, but is used What is it? Genomic sequencing technologies decode a pathogen’s to augment surveillance (i.e., data collection and analysis) for SARS- genetic material by identifying the order of chemical “letters” of its DNA CoV-2 in the U.S. and overseas. New technologies are allowing greater (or RNA, its chemical equivalent in some viruses). Each of four letters access to sequencing capabilities by making NGS portable, faster, and represents a chemical unit called a base. The sequence of the bases can more affordable (the cost of one sequence run is now one-millionth of reveal useful information for combatting disease. For example, sequencing what it was two decades ago). Genomic sequencing technologies enable of SARS-CoV-2 is used to track the spread of various strains, known as many different areas of infectious disease study. For example, they enable variants (see fig. 1). genomic epidemiology—the science of using pathogen genomic data to determine the distribution and spread of an infectious disease in a group How does it work? Technologies for sequencing genomes of pathogens of people or animals, and the application of this information to respond to use chemicals to break up the DNA or RNA into small fragments.
    [Show full text]
  • Epigenetics and Systems Biology 1St Edition Ebook
    EPIGENETICS AND SYSTEMS BIOLOGY 1ST EDITION PDF, EPUB, EBOOK Leonie Ringrose | 9780128030769 | | | | | Epigenetics and Systems Biology 1st edition PDF Book Regulation of lipogenic gene expression by lysine-specific histone demethylase-1 LSD1. BEDTools: a flexible suite of utilities for comparing genomic features. New technologies are also needed to study higher order chromatin organization and function. For example, acetylation of the K14 and K9 lysines of the tail of histone H3 by histone acetyltransferase enzymes HATs is generally related to transcriptional competence. The idea that multiple dynamic modifications regulate gene transcription in a systematic and reproducible way is called the histone code , although the idea that histone state can be read linearly as a digital information carrier has been largely debunked. Namespaces Article Talk. It seems existing structures act as templates for new structures. As part of its efforts, the society launched a journal, Epigenetics , in January with the goal of covering a full spectrum of epigenetic considerations—medical, nutritional, psychological, behavioral—in any organism. Sooner or later, with the advancements in biomedical tools, the detection of such biomarkers as prognostic and diagnostic tools in patients could possibly emerge out as alternative approaches. Genotype—phenotype distinction Reaction norm Gene—environment interaction Gene—environment correlation Operon Heritability Quantitative genetics Heterochrony Neoteny Heterotopy. The lysine demethylase, KDM4B, is a key molecule in androgen receptor signalling and turnover. Khan, A. Hidden categories: Webarchive template wayback links All articles lacking reliable references Articles lacking reliable references from September Wikipedia articles needing clarification from January All articles with unsourced statements Articles with unsourced statements from June This mechanism enables differentiated cells in a multicellular organism to express only the genes that are necessary for their own activity.
    [Show full text]
  • Long Non-Coding Rnas, the Dark Matter: an Emerging Regulatory Component in Plants
    International Journal of Molecular Sciences Review Long Non-Coding RNAs, the Dark Matter: An Emerging Regulatory Component in Plants Muhammad Waseem 1,2,3 , Yuanlong Liu 1,2,3 and Rui Xia 1,2,3,* 1 State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510640, China; [email protected] (M.W.); [email protected] (Y.L.) 2 Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510640, China 3 Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510640, China * Correspondence: [email protected] Abstract: Long non-coding RNAs (lncRNAs) are pervasive transcripts of longer than 200 nucleotides and indiscernible coding potential. lncRNAs are implicated as key regulatory molecules in various fundamental biological processes at transcriptional, post-transcriptional, and epigenetic levels. Ad- vances in computational and experimental approaches have identified numerous lncRNAs in plants. lncRNAs have been found to act as prime mediators in plant growth, development, and tolerance to stresses. This review summarizes the current research status of lncRNAs in planta, their classification based on genomic context, their mechanism of action, and specific bioinformatics tools and resources for their identification and characterization. Our overarching goal is to summarize recent progress on understanding the regulatory role of lncRNAs in plant developmental processes such as flowering time, reproductive growth, and abiotic stresses. We also review the role of lncRNA in nutrient stress and the ability to improve biotic stress tolerance in plants.
    [Show full text]
  • The Genomics Era: the Future of Genetics in Medicine - Glossary
    The Genomics Era: the Future of Genetics in Medicine - Glossary The glossary below provides a list of key terms used throughout the course. You do not need to read them all now; we’ll be linking back to the main glossary step wherever these terms appear, so you may refer back to this list if you are unsure of the terminology being used. Term Definition The process of matching reads back to their original Alignment position in the reference genome. An allele is one of a number of alternative forms of the same gene or genetic locus. We inherit one copy Allele of our genetic code from our mother and one copy of our genetic code from our father. Each copy is known as an allele. Microarray based genomic comparative hybridisation. This is a technique used to detect chromosome imbalances by comparing patient and control DNA and comparing differences between the two sets. It is Array CGH a useful technique for detecting small chromosome deletions and duplications which would not have been detected with more traditional karyotyping techniques. A unit of DNA. There are four bases which form the Base cross links (or rungs) of the DNA double helix: adenine (A), thymine (T), guanine (G) and cytosine (C). Capture see Target enrichment. The process by which a cell becomes specialized in Cell differentiation order to perform a specific function. Centromere The point at which the sister chromatids are joined. #1 FutureLearn A structure located in the nucleus all living cells, comprised of DNA bound around proteins called histones. The normal number of chromosomes in each Chromosome human cell nucleus is 46 and is composed of 22 pairs of autosomes and a pair of sex chromosomes which determine gender: males have an X and a Y chromosome whilst females have two X chromosomes.
    [Show full text]
  • DNA Sequencing) Time Binding Sites and Other Functional Sites Using Sequencing As a Means of Evaluating Chromatin Immunoprecipitation (Chip) Elaine R
    COMMENTARY for re-sequencing genomes. With next- generation-based applications, we rapidly A brief history of will begin to annotate the human genome with the positions of regulatory protein- (DNA sequencing) time binding sites and other functional sites using sequencing as a means of evaluating chromatin immunoprecipitation (ChIP) Elaine R. Mardis experiments. A variant of ChIP will eluci- date how genome-wide patterns of histone Each spring, I co-teach a course to under- binding and DNA methylation relate to graduates that aims to introduce them to gene-expression regulation in various cell the brief history of genome sequencing states, such as differentiation or disease. and then immerses them in its current The short read-lengths of next-generation practices. Looking out at their eager faces, platforms also are ideal for discovering the I try (perhaps in vain) to capture for them sequences of non-coding RNA genes that in a 1 hour lecture what has been my life’s cannot be elucidated by in silico methods. focus for the past 20 years or so — DNA Bioinformatics-based analysis of genome- sequencing. If forced to summarize this wide DNA copy number, DNA-sequence time period succinctly, I would say, “Never variation and RNA-expression data sets, all a dull moment!” This is largely owing to the produced by next-generation sequencers, technological advances that have catapulted will be integrated to stitch together the genome sequencing from a cottage industry pieces of the biological ‘story’ being told to a high-throughput enterprise, akin to by genomic data. These stories will, in a factory.
    [Show full text]