Commensal Viruses of Mosquitoes: Host Restriction, Transmission, and Interaction with Arboviral Pathogens Roy A

Total Page:16

File Type:pdf, Size:1020Kb

Commensal Viruses of Mosquitoes: Host Restriction, Transmission, and Interaction with Arboviral Pathogens Roy A Commensal Viruses of Mosquitoes: Host Restriction, Transmission, and Interaction with Arboviral Pathogens Roy A. Hall1, Helle Bielefeldt-Ohmann1, Breeanna J. McLean1, Caitlin A. O’Brien1, Agathe M.G. Colmant1, Thisun B.H. Piyasena1, Jessica J. Harrison1, Natalee D. Newton1, Ross T. Barnard1, Natalie A. Prow1,2, Joshua M. Deerain1, Marcus G.K.Y. Mah1,2 and Jody Hobson-Peters1 1Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia. 2QIMR Berghofer Medical Research Institute, Herston, QLD, Australia. Supplementary Issue: Evolution of the Insect Virome ABSTR ACT: Recent advances in virus detection strategies and deep sequencing technologies have enabled the identification of a multitude of new viruses that persistently infect mosquitoes but do not infect vertebrates. These are usually referred to as insect-specific viruses (ISVs). These novel viruses have generated considerable interest in their modes of transmission, persistence in mosquito populations, the mechanisms that restrict their host range to mosquitoes, and their interactions with pathogens transmissible by the same mosquito. In this article, we discuss studies in our laboratory and others that demonstrate that many ISVs are efficiently transmitted directly from the female mosquito to their progeny via infected eggs, and, moreover, that persistent infection of mosquito cell cultures or whole mosquitoes with ISVs can restrict subsequent infection, replication, and transmission of some mosquito-borne viral pathogens. This suggests that some ISVs may act as natural regulators of arboviral transmission. We also discuss viral and host factors that may be responsible for their host restriction. KEYWORDS: mosquito-borne viruses, insect-specific viruses, flaviviruses, bunyaviruses, mesoniviruses, negeviruses SUPPLEMENT: Evolution of the Insect Virome COrrespONDence: [email protected] CITATION: Hall et al. Commensal Viruses of Mosquitoes: Host Restriction, Transmission, COpyriGht: © the authors, publisher and licensee Libertas Academica Limited. This is and Interaction with Arboviral Pathogens. Evolutionary Bioinformatics 2016:12(S2) 35–44 an open-access article distributed under the terms of the Creative Commons CC-BY-NC doi: 10.4137/EBO.S40740. 3.0 License. TYPE: Review Paper subject to independent expert blind peer review. All editorial decisions made ReceiveD: October 04, 2016. RESUBmitteD: November 21, 2016. AccepteD FOR by independent academic editor. Upon submission manuscript was subject to anti- PUBlicatiON: November 23, 2016. plagiarism scanning. Prior to publication all authors have given signed confirmation of agreement to article publication and compliance with all applicable ethical and legal AcaDemic EDitOR: Liuyang Wang, Associate Editor requirements, including the accuracy of author and contributor information, disclosure of competing interests and funding sources, compliance with ethical requirements relating Peer RevieW: Four peer reviewers contributed to the peer review report. Reviewers’ to human and animal study participants, and compliance with any copyright requirements reports totaled 711 words, excluding any confidential comments to the academic editor. of third parties. This journal is a member of the Committee on Publication Ethics (COPE). FunDinG: This study was funded by the Australian Research Council (ARC Published by Libertas Academica. Learn more about this journal. DP120103994). The authors confirm that the funder had no influence over the study design, content of the article, or selection of this journal. COmpetinG Interests: Authors disclose no potential conflicts of interest. Introduction avenue for developing vector control strategies. Furthermore, Mosquito-borne viruses are objects of intense research due to the potential to genetically manipulate ISVs to develop new their complex biology, ecology, and evolution and their poten- platforms for the production of safe diagnostic antigens and tial to produce large and unpredictable outbreaks of disease.1 vaccines for mosquito-borne pathogens is now recognized as Indeed, explosive outbreaks of disease in many regions of the an innovative and a viable strategy.8 world have been caused by mosquito-borne viruses such as In this article, we review the key research conducted dengue virus (DENV), Zika virus (ZIKV), chikungunya virus on mosquito-borne ISVs with a focus on the recent isola- (CHIKV), yellow fever virus (YFV), Japanese encephalitis tion and characterization of several new ISVs that group virus (JEV), Ross River virus (RRV), and Rift Valley fever within a range of virus families including flaviviruses, virus. In the absence of safe and effective vaccines and anti- alphaviruses, bunyaviruses, mesoniviruses, negeviruses, and virals against many of these viruses, new approaches are being reoviruses. We also discuss mechanistic and evolutionary explored to control these diseases and their transmissions. features that are likely to be associated with the adaption of Currently, there is a strong research focus on a novel ISVs to a mosquito-only transmission cycle and the poten- group of “insect-specific” viruses (ISVs) that persistently infect tial applications of these viruses as novel model systems for mosquitoes, but do not infect vertebrates.2,3 Importantly, research, recombinant technology platforms, and agents of persistent infection of mosquitoes with some ISVs appears biological control. to interfere with the replication and transmission of medi- cally significant viruses, such as West Nile virus (WNV).4–7 Flaviviruses These findings suggest that ISVs may act as natural regulators The genus Flavivirus (family Flaviviridae) includes many of transmission of some arboviruses and may provide a new important mosquito-borne human pathogens such as DENV, EVOLUTIONARY BIOINFORMATICS 2016:12(S2) 35 Hall et al WNV, YFV, and ZIKV.9 These viruses cycle between inoculation of the samples onto C6/36 cells prior to the mosquitoes and human or animal hosts with replication in detection by reverse transcription polymerase chain reac- both the arthropod and the vertebrate required to maintain tion and/or the presence of cytopathic effect (CPE) in the transmission and persistence of the virus. In contrast, insect- cells.5 Subsequently, we enhanced the speed and sensitivity specific flaviviruses (ISFs) replicate only in mosquitoes and of the ISF isolation protocol by the detection of viral replica- form an interesting subgroup within the Flavivirus genus.2 tive dsRNA in inoculated mosquito cell culture by the use of The first recognized ISF, cell-fusing agent virus (CFAV), anti-dsRNA mAbs in enzyme-linked immunosorbent assay – was identified as an endogenous virus in a cell line derived referred to as “MAVRIC” (monoclonal antibodies against from Aedes aegypti mosquito larvae.10 However, it was not until viral RNA intermediates in cells).16 This approach allowed the almost 30 years later that ISFs, including CFAV and a related detection of novel and genetically diverse ISFs (as well as other virus “Kamiti River virus”, were first isolated from mosquitoes novel RNA viruses, which are given in the following sections) in the wild and characterized.11–13 Since then, many ISFs have in a sequence-independent manner and provided a relatively been isolated or genetically detected in several mosquito species simple, cost-effective, and high-throughput protocol for the from different regions of the world.2 Studies by Saiyasombat detection of infected cultures prior to sequencing and charac- et al.14 and Bolling et al.6 indicate that ISFs are maintained in terization of the isolates. mosquito populations by vertical transmission – a process by Several ISFs were subsequently isolated from Australian which the progeny of infected female mosquitoes is infected mosquitoes including Palm Creek virus (PCV) from Coquillet- via the egg.15 tidia xanthogaster in northern Australia5,17; Parramatta River In 2010, our laboratory initiated a project to assess the virus (PaRV) from Aedes vigilax from Sydney, Newcastle, biodiversity of ISFs in Australian mosquitoes. This was ini- and Brisbane17; and local isolates of CFAV from Ae. aegypti tially performed by the detection of flavivirus RNA directly from Cairns (Harrison et al, unpublished data). Figure 1 in archival samples of homogenized mosquito pools or by illustrates the geographical distribution of these viruses Palm Creek virus (PCV) Bamaga virus Cq. xanthogaster (BgV) Cx. annulirostris Cell Fusing Agent Virus (CFAV) Ae. aegypti Nothern Territory Queensland Western Australia South Australia Parramatta river Virus (PaRV) New Ae. vigilax South Wales Victoria Tasmania Figure 1. Map of Australia showing general locations of insect-specific flavivirus isolations. 36 EVOLUTIONARY BIOINFORMATICS 2016:12(S2) Commensal viruses of mosquitoes MODV NC_003635.1 TBEV NC_001672 1 CxFV NC_008604 1 CTFV HE574574 1 QBV NC_012671 Lineage I ISF 1 NIEV NC_024299 1 PCV KC505248 1 NAKV GQ165809 1 AEFV NC_012932 1 KRV NC_005064 1 CFAV NC_001564 1 HANKV JQ268258 PaRV KT192549 1 1 YFV NC_002031 1 BgV KU308380 EHV DQ859060 1 DENV_3 NC_001475 1 ZIKV NC_012532 1 KOKV NC_009029 0.94 1 WNV NC_009942 1 1 JEV NC_001437 MVEV NC_000943 1 NOUV EU159426 Lineage II ISF 1 1 NHUV NC_024017 BJV KC496020 1 LAMV NC_024806 1 CHAOV NC_017086 1 DONV NC_016997 ILOV NC_024805 0.5 Figure 2. Bayesian phylogenies of flaviviruses over the whole open reading frame nucleotide sequence. The tree was constructed in Geneious using
Recommended publications
  • The Viruses of Vervet Monkeys and of Baboons in South Africa
    THE VIRUSES OF VERVET MONKEYS AND OF BABOONS IN SOUTH AFRICA Hubert Henri Malherbe A Thesis Submitted to the Faculty of Medicine University of the Witwatersrand, Johannesburg for the Degree of Doctor of Medicine Johannesburg 1974 11 ABSTRACT In this thesis are presented briefly the results of studies extending over the period 1955 to 1974. The use of vervet monkeys in South Africa for the production and testing of poliomyelitis vaccine made acquaintance with their viruses inevitable; and the subsequent introduction of the baboon as a laboratory animal of major importance also necessitates a knowledge of its viral flora. Since 1934 when Sabin and Wright described the B Virus which was recovered from a fatal human infection contracted as the result of a macaque monkey bite, numerous viral agents have been isolated from monkeys and baboons. In the United States of America, Dr. Robert N. Hull initiated the classification of simian viruses in an SV (for Simian Virus) series according to cytopathic effects as seen in unstained infected tissue cultures. In South Africa, viruses recovered from monkeys and baboons were designated numerically in an SA (for Simian Agent) series on the basis of cytopathic changes seen in stained preparations of infected cells. Integration of these two series is in progress. Simian viruses in South Africa have been recovered mainly through the inoculation of tissue cultures with material obtained by means of throat and rectal swabs, and also through the unmasking of latent agents present in kidney cells prepared as tissue cultures. Some evidence concerning viral activity has been derived from serological tests.
    [Show full text]
  • Genome Sequencing by Random Priming Methods for Viral Identification
    Genome sequencing by random priming methods for viral identification Rosseel Toon Dissertation submitted in fulfillment of the requirements for the degree of Doctor of Philosophy (PhD) in Veterinary Sciences, Faculty of Veterinary Medicine, Ghent University, 2015 Promotors: Dr. Steven Van Borm Prof. Dr. Hans Nauwynck “The real voyage of discovery consist not in seeking new landscapes, but in having new eyes” Marcel Proust, French writer, 1923 Table of contents Table of contents ....................................................................................................................... 1 List of abbreviations ................................................................................................................. 3 Chapter 1 General introduction ................................................................................................ 5 1. Viral diagnostics and genomics ....................................................................................... 7 2. The DNA sequencing revolution ................................................................................... 12 2.1. Classical Sanger sequencing .................................................................................. 12 2.2. Next-generation sequencing ................................................................................... 16 3. The viral metagenomic workflow ................................................................................. 24 3.1. Sample preparation ...............................................................................................
    [Show full text]
  • Changes to Virus Taxonomy 2004
    Arch Virol (2005) 150: 189–198 DOI 10.1007/s00705-004-0429-1 Changes to virus taxonomy 2004 M. A. Mayo (ICTV Secretary) Scottish Crop Research Institute, Invergowrie, Dundee, U.K. Received July 30, 2004; accepted September 25, 2004 Published online November 10, 2004 c Springer-Verlag 2004 This note presents a compilation of recent changes to virus taxonomy decided by voting by the ICTV membership following recommendations from the ICTV Executive Committee. The changes are presented in the Table as decisions promoted by the Subcommittees of the EC and are grouped according to the major hosts of the viruses involved. These new taxa will be presented in more detail in the 8th ICTV Report scheduled to be published near the end of 2004 (Fauquet et al., 2004). Fauquet, C.M., Mayo, M.A., Maniloff, J., Desselberger, U., and Ball, L.A. (eds) (2004). Virus Taxonomy, VIIIth Report of the ICTV. Elsevier/Academic Press, London, pp. 1258. Recent changes to virus taxonomy Viruses of vertebrates Family Arenaviridae • Designate Cupixi virus as a species in the genus Arenavirus • Designate Bear Canyon virus as a species in the genus Arenavirus • Designate Allpahuayo virus as a species in the genus Arenavirus Family Birnaviridae • Assign Blotched snakehead virus as an unassigned species in family Birnaviridae Family Circoviridae • Create a new genus (Anellovirus) with Torque teno virus as type species Family Coronaviridae • Recognize a new species Severe acute respiratory syndrome coronavirus in the genus Coro- navirus, family Coronaviridae, order Nidovirales
    [Show full text]
  • RNA-Dependent RNA Polymerase Consensus Sequence of the L-A Double-Stranded RNA Virus: Definition of Essential Domains
    Proc. Nati. Acad. Sci. USA Vol. 89, pp. 2185-2189, March 1992 Biochemistry RNA-dependent RNA polymerase consensus sequence of the L-A double-stranded RNA virus: Definition of essential domains JUAN CARLOS RIBAS AND REED B. WICKNER Section on the Genetics of Simple Eukaryotes, Laboratory of Biochemical Pharmacology, National Institute of Diabetes and Digestive and Kidney Diseases, Building 8, Room 207, National Institutes of Health, Bethesda, MD 20892 Communicated by Herbert Tabor, November 27, 1991 (received for review October 2, 1991) ABSTRACT The L-A double-stranded RNA virus of Sac- lacking M1 (reviewed in refs. 10 and 18). M1 depends on L-A charomyces cerevisiac makes a gag-pol fusion protein by a -1 for its coat and replication proteins (19). MAK10 is one of ribosomal frameshift. The pol amino acid sequence includes three chromosomal genes needed for L-A virus propagation consensus patterns typical of the RNA-dependent RNA poly- within yeast cells (20). In a maklO host, L-A proteins merases (EC 2.7.7.48) of (+) strand and double-stranded RNA expressed from a cDNA clone of L-A support the replication viruses of animals and plants. We have carried out "alanine- of the M1 satellite virus but (for unknown reasons) do not scanning mutagenesis" of the region of L-A including the two support propagation of the L-A virus itself (21). Thus, while most conserved polymerase motifs, SG...T...NT..N (. = any L-A requires the MAK10 product itself, M1 requires MAK10 amino acid) and GDD. By constructing and analyzing 46 only because it requires the L-A-encoded proteins.
    [Show full text]
  • The Insect-Specific Palm Creek Virus Modulates West Nile Virus Infection in and Transmission by Australian Mosquitoes Sonja Hall-Mendelin1, Breeanna J
    Hall-Mendelin et al. Parasites & Vectors (2016) 9:414 DOI 10.1186/s13071-016-1683-2 RESEARCH Open Access The insect-specific Palm Creek virus modulates West Nile virus infection in and transmission by Australian mosquitoes Sonja Hall-Mendelin1, Breeanna J. McLean2, Helle Bielefeldt-Ohmann2,3, Jody Hobson-Peters2, Roy A. Hall2 and Andrew F. van den Hurk1* Abstract Background: Insect-specific viruses do not replicate in vertebrate cells, but persist in mosquito populations and are highly prevalent in nature. These viruses may naturally regulate the transmission of pathogenic vertebrate-infecting arboviruses in co-infected mosquitoes. Following the isolation of the first Australian insect-specific flavivirus (ISF), Palm Creek virus (PCV), we investigated routes of infection and transmission of this virus in key Australian arbovirus vectors and its impact on replication and transmission of West Nile virus (WNV). Methods: Culex annulirostris, Aedes aegypti and Aedes vigilax were exposed to PCV, and infection, replication and transmission rates in individual mosquitoes determined. To test whether the virus could be transmitted vertically, progeny reared from eggs oviposited by PCV-inoculated Cx. annulirostris were analysed for the presence of PCV. To assess whether prior infection of mosquitoes with PCV could also suppress the transmission of pathogenic flaviviruses, PCV positive or negative Cx. annulirostris were subsequently exposed to WNV. Results: No PCV-infected Cx. annulirostris were detected 16 days after feeding on an infectious blood meal. However, when intrathoracically inoculated with PCV, Cx. annulirostris infection rates were 100 %. Similar rates of infection were observed in Ae. aegypti (100 %) and Ae. vigilax (95 %). Notably, PCV was not detected in any saliva expectorates collected from any of these species.
    [Show full text]
  • A New Orbivirus Isolated from Mosquitoes in North-Western Australia Shows Antigenic and Genetic Similarity to Corriparta Virus B
    viruses Article A New Orbivirus Isolated from Mosquitoes in North-Western Australia Shows Antigenic and Genetic Similarity to Corriparta Virus but Does Not Replicate in Vertebrate Cells Jessica J. Harrison 1,†, David Warrilow 2,†, Breeanna J. McLean 1, Daniel Watterson 1, Caitlin A. O’Brien 1, Agathe M.G. Colmant 1, Cheryl A. Johansen 3, Ross T. Barnard 1, Sonja Hall-Mendelin 2, Steven S. Davis 4, Roy A. Hall 1 and Jody Hobson-Peters 1,* 1 Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia 4072, Australia; [email protected] (J.J.H.); [email protected] (B.J.M.); [email protected] (D.W.); [email protected] (C.A.O.B.); [email protected] (A.M.G.C.); [email protected] (R.T.B.); [email protected] (R.A.H.) 2 Public Health Virology Laboratory, Department of Health, Queensland Government, P.O. Box 594, Archerfield 4108, Australia; [email protected] (D.W.); [email protected] (S.H.-M.) 3 School of Pathology and Laboratory Medicine, The University of Western Australia, Nedlands 6009, Australia; [email protected] 4 Berrimah Veterinary Laboratory, Department of Primary Industries and Fisheries, Darwin 0828, Australia; [email protected] * Correspondence: [email protected]; Tel.: +61-7-3365-4648 † These authors contributed equally to the work. Academic Editor: Karyn Johnson Received: 19 February 2016; Accepted: 10 May 2016; Published: 20 May 2016 Abstract: The discovery and characterisation of new mosquito-borne viruses provides valuable information on the biodiversity of vector-borne viruses and important insights into their evolution.
    [Show full text]
  • Infectious Dnas Derived from Insect-Specific Flavivirus
    www.nature.com/scientificreports Corrected: Author Correction OPEN Infectious DNAs derived from insect-specifc favivirus genomes enable identifcation of pre- and Received: 10 January 2017 Accepted: 24 April 2017 post-entry host restrictions in Published online: 07 June 2017 vertebrate cells Thisun B. H. Piyasena , Yin X. Setoh, Jody Hobson-Peters, Natalee D. Newton, Helle Bielefeldt-Ohmann, Breeanna J. McLean, Laura J. Vet, Alexander A. Khromykh & Roy A. Hall Flaviviruses such as West Nile virus (WNV), dengue virus and Zika virus are mosquito-borne pathogens that cause signifcant human diseases. A novel group of insect-specifc faviviruses (ISFs), which only replicate in mosquitoes, have also been identifed. However, little is known about the mechanisms of ISF host restriction. We report the generation of infectious cDNA from two Australian ISFs, Parramatta River virus (PaRV) and Palm Creek virus (PCV). Using circular polymerase extension cloning (CPEC) with a modifed OpIE2 insect promoter, infectious cDNA was generated and transfected directly into mosquito cells to produce infectious virus indistinguishable from wild-type virus. When infectious PaRV cDNA under transcriptional control of a mammalian promoter was used to transfect mouse embryo fbroblasts, the virus failed to initiate replication even when cell entry steps were by-passed and the type I interferon response was lacking. We also used CPEC to generate viable chimeric viruses between PCV and WNV. Analysis of these hybrid viruses revealed that ISFs are also restricted from replication in vertebrate cells at the point of entry. The approaches described here to generate infectious ISF DNAs and chimeric viruses provide unique tools to further dissect the mechanisms of their host restriction.
    [Show full text]
  • Clinically Important Vector-Borne Diseases of Europe
    Natalie Cleton, DVM Erasmus MC, Rotterdam Department of Viroscience [email protected] No potential conflicts of interest to disclose © by author ESCMID Online Lecture Library Erasmus Medical Centre Department of Viroscience Laboratory Diagnosis of Arboviruses © by author Natalie Cleton ESCMID Online LectureMarion Library Koopmans Chantal Reusken [email protected] Distribution Arboviruses with public health impact have a global and ever changing distribution © by author ESCMID Online Lecture Library Notifications of vector-borne diseases in the last 6 months on Healthmap.org Syndromes of arboviral diseases 1) Febrile syndrome: – Fever & Malaise – Headache & retro-orbital pain – Myalgia 2) Neurological syndrome: – Meningitis, encephalitis & myelitis – Convulsions & coma – Paralysis 3) Hemorrhagic syndrome: – Low platelet count, liver enlargement – Petechiae © by author – Spontaneous or persistent bleeding – Shock 4) Arthralgia,ESCMID Arthritis and Online Rash: Lecture Library – Exanthema or maculopapular rash – Polyarthralgia & polyarthritis Human arboviruses: 4 main virus families Family Genus Species examples Flaviviridae flavivirus Dengue 1-5 (DENV) West Nile virus (WNV) Yellow fever virus (YFV) Zika virus (ZIKV) Tick-borne encephalitis virus (TBEV) Togaviridae alphavirus Chikungunya virus (CHIKV) O’Nyong Nyong virus (ONNV) Mayaro virus (MAYV) Sindbis virus (SINV) Ross River virus (RRV) Barmah forest virus (BFV) Bunyaviridae nairo-, phlebo-©, orthobunyavirus by authorCrimean -Congo heamoragic fever (CCHFV) Sandfly fever virus
    [Show full text]
  • Competition Between Usutu Virus and West Nile Virus During Simultaneous and Sequential Infection of Culex Pipiens Mosquitoes
    Emerging Microbes & Infections ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/temi20 Competition between Usutu virus and West Nile virus during simultaneous and sequential infection of Culex pipiens mosquitoes Haidong Wang , Sandra R. Abbo , Tessa M. Visser , Marcel Westenberg , Corinne Geertsema , Jelke J. Fros , Constantianus J. M. Koenraadt & Gorben P. Pijlman To cite this article: Haidong Wang , Sandra R. Abbo , Tessa M. Visser , Marcel Westenberg , Corinne Geertsema , Jelke J. Fros , Constantianus J. M. Koenraadt & Gorben P. Pijlman (2020) Competition between Usutu virus and West Nile virus during simultaneous and sequential infection of Culexpipiens mosquitoes, Emerging Microbes & Infections, 9:1, 2642-2652, DOI: 10.1080/22221751.2020.1854623 To link to this article: https://doi.org/10.1080/22221751.2020.1854623 © 2020 The Author(s). Published by Informa View supplementary material UK Limited, trading as Taylor & Francis Group, on behalf of Shanghai Shangyixun Cultural Communication Co., Ltd Published online: 14 Dec 2020. Submit your article to this journal Article views: 356 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=temi20 Emerging Microbes & Infections 2020, VOL. 9 https://doi.org/10.1080/22221751.2020.1854623 ORIGINAL ARTICLE Competition between Usutu virus and West Nile virus during simultaneous and sequential infection of Culex pipiens mosquitoes Haidong Wanga, Sandra R. Abboa,
    [Show full text]
  • Diversity, Geography, and Host Range of Emerging Mosquito-Associated Viruses — China, 2010–2020
    China CDC Weekly Commentary Diversity, Geography, and Host Range of Emerging Mosquito-Associated Viruses — China, 2010–2020 Yuan Fang1,2; Tian Hang2; Jinbo Xue1,2; Yuanyuan Li1; Lanhua Li3; Zixin Wei1; Limin Yang1; Yi Zhang1,2,# Epidemics of emerging and neglected infectious mosquitoes and humans in China even before the diseases are severe threats to public health and are international public health emergency. The sudden largely driven by the promotion of globalization and by outbreak of egg drop syndrome caused by the international multi-border cooperation. Mosquito- Tembusu virus (TMUV) quickly swept the coastal borne viruses are among the most important agents of provinces and neighboring regions in 2010, resulting these diseases, with an associated mortality of over one in severe economic loss in the poultry industry (8). To million people worldwide (1). The well-known date, records of TMUV have covered 18 provinces in mosquito-borne diseases (MBDs) with global scale China, and are mainly comprised of reports from the include malaria, dengue fever, chikungunya, and West last decade (9). Similarly, the Getah virus, which is Nile fever, which are the largest contributor to the mainly transmitted between mosquitoes and domestic disease burden. However, the morbidity of some livestock, has been spreading across China since 2010 MBDs has sharply decreased due to expanded (10), with an outbreak on a swine farm in Hunan in programs on immunization and more efficient control 2017 (11). Moreover, despite having a relatively short strategies (e.g., for Japanese encephalitis and yellow history (first detected in 1997), the Liao ning virus fever). Nevertheless, the global distribution and burden (LNV) has been recorded in most of Northern China, of dengue fever, chikungunya, and Zika fever are including Beijing.
    [Show full text]
  • Diversity and Classification of Reoviruses in Crustaceans: a Proposal
    Journal of Invertebrate Pathology 182 (2021) 107568 Contents lists available at ScienceDirect Journal of Invertebrate Pathology journal homepage: www.elsevier.com/locate/jip Diversity and classification of reoviruses in crustaceans: A proposal Mingli Zhao a, Camila Prestes dos Santos Tavares b, Eric J. Schott c,* a Institute of Marine and Environmental Technology, University of Maryland, Baltimore County, Baltimore, MD 21202, USA b Integrated Group of Aquaculture and Environmental Studies, Federal University of Parana,´ Rua dos Funcionarios´ 1540, Curitiba, PR 80035-050, Brazil c Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD 21202, USA ARTICLE INFO ABSTRACT Keywords: A variety of reoviruses have been described in crustacean hosts, including shrimp, crayfish,prawn, and especially P virus in crabs. However, only one genus of crustacean reovirus - Cardoreovirus - has been formally recognized by ICTV CsRV1 (International Committee on Taxonomy of Viruses) and most crustacean reoviruses remain unclassified. This Cardoreovirus arises in part from ambiguous or incomplete information on which to categorize them. In recent years, increased Crabreovirus availability of crustacean reovirus genomic sequences is making the discovery and classification of crustacean Brachyuran Phylogenetic analysis reoviruses faster and more certain. This minireview describes the properties of the reoviruses infecting crusta­ ceans and suggests an overall classification of brachyuran crustacean reoviruses based on a combination of morphology, host, genome organization pattern and phylogenetic sequence analysis. 1. Introduction fish, crustaceans, marine protists, insects, ticks, arachnids, plants and fungi (Attoui et al., 2005; Shields et al., 2015). Host range and disease 1.1. Genera of Reoviridae family symptoms are also important indicators that help to identify viruses of different genera (Attoui et al., 2012).
    [Show full text]
  • Origin and Evolution of Emerging Liaoning Virus(Genus Seadornavirus, Family Reoviridae)
    Origin and Evolution of Emerging Liaoning Virusgenus Seadornavirus, family Reoviridae) Jun Zhang Shandong University of Technology Hong Liu ( [email protected] ) Shandong University of Technology https://orcid.org/0000-0002-5182-4750 Jiahui Wang Shandong University of Technology Jiheng Wang Shandong University of Technology Jianming Zhang Shandong University of Technology Jiayue Wang Shandong University of Technology Xin Zhang Shandong University of Technology Hongfang Ji Shandong University of Technology Zhongfen Ding Shandong University of Technology Han Xia Chinese Academy of Sciences Chunyang Zhang Shandong University of Technology Qian Zhao Shandong University of Technology Guodong Liang Chinese Center for Disease Control and Prevention Research Keywords: Liaoning virus, LNV, Seadornavirus, Evolution, Migration Posted Date: January 15th, 2020 DOI: https://doi.org/10.21203/rs.2.20915/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/13 Abstract Background:Liaoning virus(LNV) is a member of the genus Seadornavirus, family Reoviridae and has been isolated from kinds of sucking insects in Asia and Australia. However, there are no systematic studies describe the molecular genetic evolution and migration of LNVs isolated from different time, regions and vectors. Methods:Here, a phylogenetic analysis using Bayesian Markov chain Monte Carlo simulations was conducted on the LNVs isolated from a variety of vectors during 1990-2014,worldwide. Results:The phylogenetic analysis demonstrated that the LNV could be divided into 3 genotypes, of which genotype 1 mainly composed of LNVs isolated from Australia during 1990 to 2014 as well as the original LNV strain(LNV-NE97-31) isolated from Liaoning province in northern China in 1997,genotype 2 comprised of the isolates all from Xinjiang province in western China and genotype 3 consisted the isolates from Qinghai and Shanxi province of central China.
    [Show full text]