Geological and Soil Resources
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
1917 Gossip Column & News Articles
TEMECULA VALLEY HISTORICAL SOCIETY 1917 Gossip Column & News Articles January 5, 1917 After spending a few days in Los Angeles, Paul Clark of the Pauba Ranch returned home the first of the week. Eila Kolb, who is attending the Riverside business college, spent the holidays at home. After spending a very pleasant visit with his parents Frank Ramos returned to Riverside last Saturday to continue his studies. Dr. L. L. Roripaugh of Auld was in town the other day treating his friends to cigars. The doctor being newly wed his many friends wish him and his bride a very happy future. Curtis Stevenson and wife of Pechanga were first of the week visitors at the Ventura Arviso home. Francis McCarrell drove over here after freight for the Aguanga store. E. C. Tripp of Aguanga was in town the last of the week hauling lumber. Mrs. John B. Kelly returned home Saturday from Los Angeles where she had a pleasant two weeks' visit with her sister, Mrs. John N. Carr. Charles Swain and Juan Munoa have moved to the Harvey place, where they will plant barley this winter. The dance given at the Bank hall Saturday night was attended by several from the surrounding country. D. S. Woosley of Escondido was in town the first of the week doing some missionary work. A large number of the young people from town attended the dance at the Murrieta Hot Springs. George Studley has succeeded J. S. Felix as foreman of the cowboys at the Pauba Ranch. Mr. Studley has been a steady hand at the ranch for four years. -
5.4 Geology and Soils
BEACH BOULEVARD SPECIFIC PLAN DRAFT EIR CITY OF ANAHEIM 5. Environmental Analysis 5.4 GEOLOGY AND SOILS This section of the Draft Environmental Impact Report (DEIR) evaluates the potential for implementation of the Beach Boulevard Specific Plan (Proposed Project) to impact geological and soil resources in the City of Anaheim. 5.4.1 Environmental Setting Regulatory Setting California Alquist-Priolo Earthquake Fault Zoning Act The Alquist-Priolo Earthquake Fault Zoning Act was signed into state law in 1972. Its primary purpose is to mitigate the hazard of fault rupture by prohibiting the location of structures for human occupancy across the trace of an active fault. The act delineates “Earthquake Fault Zones” along faults that are “sufficiently active” and “well defined.” The act also requires that cities and counties withhold development permits for sites within an earthquake fault zone until geologic investigations demonstrate that the sites are not threatened by surface displacement from future faulting. Pursuant to this act, structures for human occupancy are not allowed within 50 feet of the trace of an active fault. Seismic Hazard Mapping Act The Seismic Hazard Mapping Act (SHMA) was adopted by the state in 1990 to protect the public from the effects of nonsurface fault rupture earthquake hazards, including strong ground shaking, liquefaction, seismically induced landslides, or other ground failure caused by earthquakes. The goal of the act is to minimize loss of life and property by identifying and mitigating seismic hazards. The California Geological Survey (CGS) prepares and provides local governments with seismic hazard zone maps that identify areas susceptible to amplified shaking, liquefaction, earthquake-induced landslides, and other ground failures. -
Trabuco Community Defense Project
United States Department of Agriculture Trabuco Community Defense Project Preliminary U.S. Forest Environmental Assessment Service April • 2010 Interdisciplinary Team members discuss the Trabuco Community Defense Project. Trabuco Ranger District • Cleveland National Forest 1147 East 6th St. • Corona, CA 92879 Orange and Riverside Counties, California T.6N., R.5W. and T.7S., R.6W., SBM Trabuco Community Defense Project – Preliminary Environmental Assessment 1 The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or part of an individual’s income is derived from any public assistance. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at 202-720-2600 (voice and TDD). To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, 1400 Independence Avenue, SW, Washington, DC 20250-9410 or call toll free (866) 632-9992 (voice). TDD users can contact USDA through local relay or the Federal relay at (800) 877-8339 (TDD) or (866) 377-8642 (relay voice). USDA is an equal opportunity provider and employer. 2 Trabuco Community Defense Project – Preliminary Environmental Assessment Contents Summary………………………………………….…………...…… 5 I Introduction………….………………….…………………………………………… 8 Background…………………………………………………………………. 8 Purpose and Need for Action………………………………………………… 11 Proposed Action…………………………………………………..………… 13 Decision Framework…………………………………………………………. 13 Public Involvement…………………………………………….…………….. 13 Issues……………………………………………………………………….. 14 II Alternatives……..…………………………………………………………………… 16 Alternative 1 – No Action……………………………………………………. -
General Plan Amendment No. 1208 Lakeland Village Community Plan
FINAL INITIAL STUDY/MITIGATED NEGATIVE DECLARATION General Plan Amendment No. 1208 Lakeland Village Community Plan State Clearinghouse No. 2020050501 Lead Agency: RIVERSIDE COUNTY Planning Department 4080 Lemon Street, 12th Floor, Riverside, CA 92501 Contact: Mr. Robert Flores 951.955.1195 Prepared by: MICHAEL BAKER INTERNATIONAL 3536 Concours Street Ontario, California 91764 Contact: Mr. Peter Minegar, CEP-IT 951.506.3523 June 2020 JN 155334 This document is designed for double-sided printing to conserve natural resources. Section I Initial Study/ Mitigated Negative Declaration General Plan Amendment No. 1208 Lakeland Village Community Plan COUNTY OF RIVERSIDE ENVIRONMENTAL ASSESSMENT FORM: INITIAL STUDY Environmental Assessment (CEQ / EA) Number: N/A Project Case Type (s) and Number(s): General Plan Amendment No. 1208 (GPA No. 1208) Lead Agency Name: Riverside County Planning Department Address: 4080 Lemon Street, P.O. Box 1409, Riverside, CA 92502-1409 Contact Person: Robert Flores (Urban and Regional Planner IV) Telephone Number: 951-955-1195 Applicant’s Name: N/A Applicant’s Address: N/A I. PROJECT INFORMATION Project Description: BACKGROUND AND CONTEXT The County of Riverside is composed of approximately 7,300 square miles, bounded by Orange County to the west, San Bernardino County to the north, the State of Arizona to the east, and San Diego and Imperial Counties to the south. Development for the unincorporated County is guided by the Riverside County General Plan, which was last comprehensively updated and adopted in December 2015. The Riverside County General Plan is divided into 19 Area Plans covering most of the County (refer to Exhibit 1, Riverside County Area Plans). -
County of Riverside General Plan Elsinore Area Plan
County of Riverside General Plan Elsinore Area Plan COUNTY OF RIVERSIDE Transportation and Land Management Agency 4080 Lemon Street, 12th Floor Riverside, CA 92501-3634 Phone: (951) 955-3200, Fax: (951) 955-1811 October 2011 County of Riverside General Plan Elsinore Area Plan TABLE OF CONTENTS Vision Summary.......................................................................................................................................................... iv Introduction ................................................................................................................................................................. 1 A Special Note on Implementing the Vision ........................................................................................................ 1 Location ........................................................................................................................................................................ 3 Features ........................................................................................................................................................................ 7 Setting ....................................................................................................................................................................... 7 Unique Features ........................................................................................................................................................ 7 Cleveland National Forest ................................................................................................................................... -
FY 2019-2020 and FY 2020-21 Budget
BUDGET Elsinore Valley Municipal Water District FISCAL YEAR 2020 AND 2021 TABLE OF CONTENTS GENERAL MANAGER BUDGET HIGHLIGHTS 4 GFOA Distinguished Budget Presentation Award 15 CSMFO Certificate of Award for Excellence in Operating Budget 16 BUDGET NARRATIVE 17 Description of the District and the Budget Process 18 Operating Revenues and Expenditures 24 Non-Operating Revenues and Expenditures 29 AUTHORIZED POSITIONS 36 Organization Chart 37 Summary of Changes in Authorized Positions 38 Authorized Position Listing 41 STRATEGIC PLAN & DEPARTMENT ACCOMPLISHMENTS 46 Strategic Plan 47 General Management 49 Business Services Division 53 Engineering & Operations Division 58 CAPITAL OUTLAYS 63 Significant Capital Outlays 64 Fiscal Year 2020 65 Fiscal Year 2021 66 CAPITAL IMPROVEMENT PROJECTS 67 Capital Improvement Projects 68 Fiscal Year 2020 & 2021 76 BUDGET STATEMENTS 79 Fund Structure 80 List of Funds/Programs 82 Elsinore Valley Municipal Water District 1 TABLE OF CONTENTS Relationship between Divisions, Departments, Sections, and Funds 87 Summary of Revenues & Operating Transfers In/Out All Funds 88 Consolidated Statement of Sources and Uses 89 Statement of Sources and Uses of Funds Fiscal Year 2020 90 Statement of Sources and Uses of Funds Fiscal Year 2021 106 Consolidated Statement of Income 122 Computation of Debt Coverage 123 Debt Repayment Requirements & Sources Fiscal Year 2020 & 2021 124 Funding and Cash Flow Diagram 127 Significant Changes in Fund Balances 128 Schedule of Changes in Fund Balance, Fiscal Year 2020 129 Schedule of Changes -
Notice Concerning Copyright Restrictions
NOTICE CONCERNING COPYRIGHT RESTRICTIONS This document may contain copyrighted materials. These materials have been made available for use in research, teaching, and private study, but may not be used for any commercial purpose. Users may not otherwise copy, reproduce, retransmit, distribute, publish, commercially exploit or otherwise transfer any material. The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material. Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specific conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use," that user may be liable for copyright infringement. This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law. Geothermal Resources Council, TRANSACTIONS, Vol. 10, September 1986 GEOTHERMAL EXPLORATION IN THE VICINITY OF LAKE ELSINORE, SOUTHERN CALIFORNIA Brian N. Damiata and Tien-Chang Lee Institute of Geophysics and Planetary Physics University of California, Riverside, CA 92521 ABSTRACT Geothermal exploration in the Lake Elsinore area has primarily focused near a cross fault which acts as a conduit for thermal water. Flow testing of an exploratory hole indicates an ani- sotropic aquifer with a maximum transmissivity IO mi axis oriented along the fault striking N 11" E. Thermal water migrates laterally throughout the downtown area along a zone of enhanced transmissivity associated with the fault. -
Potential for a Large Earthquake Near Los Angeles Inferred from the 2014
PUBLICATIONS Earth and Space Science RESEARCH ARTICLE Potential for a large earthquake near Los Angeles 10.1002/2015EA000113 inferred from the 2014 La Habra earthquake Key Points: Andrea Donnellan1,2, Lisa Grant Ludwig3, Jay W. Parker1, John B. Rundle4, Jun Wang5, Marlon Pierce5, • UAVSAR and GPS results of the M5.1 6 1 La Habra earthquake show broad Geoffrey Blewitt , and Scott Hensley deformation 1 2 • Concurrent slip on several shallow Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA, Department of Earth Sciences, 3 structures best explains the University of Southern California, Loa Angeles, California, USA, Program in Public Health, University of California, Irvine, observations California, USA, 4Departments of Physics and Geology, University of California, Davis, California, USA, 5University • We show a time-independent Information Technology Services, Indiana University, Bloomington, Indiana, USA, 6Nevada Geodetic Laboratory, Nevada means of estimating the potential for future events Bureau of Mines and Geology, University of Nevada, Reno, Nevada Abstract Tectonic motion across the Los Angeles region is distributed across an intricate network of strike-slip Correspondence to: and thrust faults that will be released in destructive earthquakes similar to or larger than the 1933 M6.4 Long A. Donnellan, Beach and 1994 M6.7 Northridge events. Here we show that Los Angeles regional thrust, strike-slip, and [email protected] oblique faults are connected and move concurrently with measurable surface deformation, even in moderate magnitude earthquakes, as part of a fault system that accommodates north-south shortening and westerly Citation: tectonic escape of northern Los Angeles. The 28 March 2014 M5.1 La Habra earthquake occurred on a Donnellan,A.,L.GrantLudwig,J.W.Parker, J. -
Climate and Recreation in the Santa Ana River Watershed
Santa Ana Basin Climate and Recreation in the Newsletter Date Santa Ana River Watershed Results Is Lake Elsinore in danger of drying up? Lake Elsinore, shown in Figure 1, is southern California’s largest natural lake and is situated at the bottom of the San Jacinto Watershed. Because Lake Elsinore is a terminal lake, fed only by rain and natural runoff, it has been impacted by low lake levels. In 2005, Elsinore Valley Municipal Water District (EVMWD) began a two year project to introduce recycled water into Lake Elsinore to stabilize lake levels. The project delivers approximately 5 MGD of recycled water to Lake Elsinore, and includes repair and Key Findings retrofit of three local, shallow groundwater wells that deliver approximately 1 MGD. An analysis was Lake Elsinore has less than a done to determine if these measures would be enough to meet the minimum goal volume of 41,704 10% chance of drying up. acre-ft (elevation of 1,240 ft), avoid low lake levels (below 24,659 acre-ft, elevation of 1,234 ft), or pre- vent the lake from drying up all together (as occurred in the 1930s). In the future period 2000-2049 Lake Elsinore has a >75% Figure 2 shows the distribution of projected average annual volume for two future periods, 2000-2049 chance of meeting the minimum and 2050-2099, based on 112 different climate change projections. The two future periods where also elevation goal. analyzed with the addition of the EVMWD project. For the 2000-2049 period there is a >50% chance that the average annual lake level will meet the minimum goal, adding in the EVMWD project brings that In the future period 2050-2099 likelihood up to >75%. -
1. NEOGENE TECTONICS of SOUTHERN CALIFORNIA . the Focus of This Research Project Is to Investigate the Timing of Rotation of T
1. NEOGENE TECTONICS OF SOUTHERN CALIFORNIA. The focus of this research project is to investigate the timing of rotation of the Transverse Ranges and the evolution of the 3-D architecture of the Los Angeles basin. Objectives are to understand better the seismicity of the region and the relationships between petroleum accumulations and the structure and stratigraphic evolution of the basin. Figure 1 shows the main physiographic and structural features of the Los Angeles basin region, the epicenter of recent significant earthquakes and the our initial study area in the northeastern Los Angeles basin. Los Angeles basin tectonic model: Most tectonic models attribute the opening of the Los Angeles basin to lithospheric extension produced by breakaway of the Western Transverse Ranges from the Peninsular Ranges and 90 degrees or more of clockwise rotation from ca. 18 Ma to the present. Evidence of this extension includes crustal thinning on tomographic profiles between the Santa Ana Mountains and the Santa Monica Mountains and the presence in the Los Angeles basin of Middle Miocene volcanic rocks and proto-normal faults. Detailed evidence of the 3-D architecture of the rift created by the breakaway and the timing of the rift phase has remained elusive. The closing of the Los Angeles basin in response to N-S contraction began at ca. 8 Ma and continues today (Bjorklund, et al., 2002). A system of active faults has developed that pose significant seismic hazards for the greater Los Angeles region. Crustal heterogeneities that developed during the extension phase of basin development may have strongly influenced the location of these faults. -
Geologic Map of the Lakeview 7.5' Quadrangle, Riverside
Prepared in cooperation with the U.S. DEPARTMENT OF THE INTERIOR Eastern Municipal Water District and the CALIFORNIA DIVISION OF MINES AND GEOLOGY U.S. GEOLOGICAL SURVEY OPEN-FILE REPORT 01-174 Version 1.0 117 7' 30" 117 00' CORRELATION OF MAP UNITS DESCRIPTION OF MAP UNITS 3 52' 30" 33 52' 30" MODERN SURFICIAL DEPOSITS—Sediment recently transported and Kmeg Granite of Mount Eden (Cretaceous)—Granite to monzogranite; white to gray, grain-size, rare schlieren, and more abundant, more attenuated inclusions. Age Qw Qf Qv Qc Qlv deposited in channels and washes, on surfaces of alluvial fans and alluvial plains, leucocratic, medium- to coarse-grained, commonly foliated. Contains relation to Lakeview Mountains pluton is ambiguous. Small mass of tonalite and on hillslopes. Soil-profile development is non-existant. Includes: muscovite, garnet, and almost no mafic minerals. Restricted to northeastern resembling Lakeview Mountains tonalite occurs within the Reinhardt Canyon Qyf6 Qw Very young wash deposits (late Holocene)—Deposits of active alluvium; confined part of quadrangle where it occurs as dikes and irregular masses emplaced pluton near the contact, but is not clear whether it is inclusion or intrusion of to San Jacinto River channel. Consists mostly of unconsolidated sand in along foliation in metamorphic rocks; also as southernmost part of small pluton Lakeview Mountains rock. Similar appearing tonalite north of Lakeview Qyf5 ephemeral, engineered river channel. Prior to agricultural development, that extends into quadrangle to north Mountains is correlated with Reinhardt Canyon pluton Holocene position of river channel was north of current engineered channel. Sediment Mixed metamorphic rocks and granitic rocks (Cretaceous and Qyf4 Klt Tonalite of Laborde Canyon (Cretaceous)—Biotite-hornblende tonalite. -
Western Riverside County Regional Conservation Authority (RCA) Annual Report to the Wildlife Agencies
Western Riverside County Multiple Species Habitat Conservation Plan (MSHCP) Biological Monitoring Program Rare Plant Survey Report 2011 08 June 2012 Rare Plant Survey Report 2011 TABLE OF CONTENTS INTRODUCTION.........................................................................................................................................1 GOALS AND OBJECTIVES ...................................................................................................................1 METHODS ....................................................................................................................................................2 PROTOCOL DEVELOPMENT ................................................................................................................2 SURVEY SITE SELECTION...................................................................................................................2 SURVEY METHODS ............................................................................................................................4 PERSONNEL AND TRAINING ...............................................................................................................5 DATA ANALYSIS ................................................................................................................................6 RESULTS.......................................................................................................................................................7 DISCUSSION ................................................................................................................................................7