Bone Resorption Inhibitors and Related Agents

Total Page:16

File Type:pdf, Size:1020Kb

Bone Resorption Inhibitors and Related Agents © Copyright 2012 Oregon State University. All Rights Reserved Drug Use Research & Management Program Oregon State University, 500 Summer Street NE, E35 Salem, Oregon 97301-1079 Phone 503-947-5220 | Fax 503-947-1119 Literature Scan: Bone Resorption Inhibitors and Related Agents Date of Review: July 2016 Date of Last Review: May 2014 Literature Search: April 2014 – April 2016 Current Status of PDL Class: See Appendix 1. Conclusions: The Endocrine Society recommends intravenous (IV) zoledronic acid 5 mg in a single dose for most patients with active Paget’s disease who are at risk for complications unless contraindications exist.1 One systematic review with meta‐analysis found no statistically significant and consistent difference in vertebral and nonvertebral fracture risk reduction between bisphosphonates, denosumab, or teriparatide.2 Denosumab had lower rates of nonvertebral fracture compared to other bisphosphonates or placebo in one systematic review with meta‐analysis but with increased risk for infections.2,3 A systematic review with meta‐analysis found no benefit in terms of risk for vertebral or nonvertebral fractures with bisphosphonate use at 12 months in patients with cystic fibrosis, though a significant increase in percent change in bone mineral density (BMD) of the lumbar spine, hip and femur was found.4 In patients with osteogenesis imperfecta, oral alendronate and IV pamidronate showed no difference in fracture incidence.5 A significant increase was seen in Z‐score BMD between patients dosed 0.2 mg/kg versus 2 mg/kg of IV risedronate.5 No difference in fracture risk was seen in patients treated with zoledronic acid versus pamidronate.5 Bisphosphonate‐treated patients with inflammatory bowel disease had improvements in BMD at the lumbar spine and total hip and lower rates of vertebral and nonvertebral fractures when compared to control groups.6 Early breast cancer patients scheduled to receive aromatase inhibitors had a greater increase in BMD in the lumbar spine in terms of percent change and absolute change when treated with a bisphosphonate compared to calcium or vitamin D supplementation.7 Patients with Parkinson’s disease and previous stroke had reduced rates of hip fractures when treated with bisphosphonates compared to controls.8 Raloxifene was not found to prevent nonvertebral fractures and is associated with a significant rate of severe side effects including thromboembolic events, pulmonary embolism, and fatal strokes.2 Cases of osteonecrosis of the jaw have been reported with bisphosphonate use but are associate much more significantly with IV bisphosphonates versus oral formulations and in patients being treated for malignant conditions.2 No statistically significant difference among any bisphosphonates in terms of gastrointestinal (GI) safety outcomes were found in one systematic review.2 In addition, no significant relationship was discovered between oral alendronate and risedronate for risk of upper GI harms.2 Another systematic review found that zoledronic acid had the highest probability of GI‐related adverse events (91%) followed by etidronate (8%) and alendronate (1%).9 Etidronate (56%) had Authors: K. Delach/ A. Gibler Date: July 2016 the highest rate of upper GI adverse events followed by alendronate (40%) and risedronate (1%).9 The incidence of nausea was highest with zoledronic acid (70%) followed by alendronate (29%), placebo (1%), and risedronate (0%).9 Absolute rates of cardiovascular (CV) events were slightly higher in bisphosphonate‐treated patients (6.5%) versus controls (6.2%) over 25‐36 months.10 The absolute risk of atrial fibrillation conversely was minimally lower in bisphosphonate treated patients (1.4%) versus controls (1.5%) over 25‐36 months though the risk associated with zoledronic acid was somewhat elevated compared to controls (OR 1.24; 95% CI: 0.96 to 1.61).10 Rates of myocardial infarction, stroke, and death from cardiovascular causes were similar at between patients treated with bisphosphonates versus controls.10 Recommendations: No further review or research needed at this time. After the executive session, no changes to the PDL were made. Previous Conclusions and Recommendations: There is no new comparative evidence that suggests changes to previous recommendations are needed: o Consider inclusion of denosumab, zoledronic acid, risedronate, alendronate in various routes and dosing schedules for osteoporosis treatment based upon cost. o Include at least one nitrogen‐containing bisphosphonate for Paget ’s disease (zoledronic acid, pamidronate, risedronate, alendronate or ibandronate). o Make calcitonin, raloxifene and teriparatide non‐preferred due to limited evidence to reduce non‐vertebral and hip fracture risk in post‐menopausal women. Calcitonin has limited evidence for Paget ’s disease. o Make tiludronate non‐preferred as it is only indicated for Paget’s, is not a nitrogen containing bisphosphonate and it has insufficient evidence for osteoporosis treatment. No further review or research needed at this time. Methods: A Medline literature search for new systematic reviews and randomized controlled trials (RCTs) assessing clinically relevant outcomes to active controls, or placebo if needed, was conducted. A summary of the clinical trials is available in Appendix 2 with abstracts presented in Appendix 3. The Medline search strategy used for this literature scan is available in Appendix 4, which includes dates, search terms and limits used. The OHSU Drug Effectiveness Review Project, Agency for Healthcare Research and Quality (AHRQ), Cochrane Collection, National Institute for Health and Clinical Excellence (NICE), Department of Veterans Affairs, BMJ Clinical Evidence, and the Canadian Agency for Drugs and Technologies in Health (CADTH) resources were manually searched for high quality and relevant systematic reviews. When necessary, systematic reviews are critically appraised for quality using the AMSTAR tool and clinical practice guidelines using the AGREE tool. The FDA website was searched for new drug approvals, indications, and pertinent safety alerts. Finally, the AHRQ National Guideline Clearinghouse (NGC) was searched for updated and recent evidence‐based guidelines. The primary focus of the evidence is on high quality systematic reviews and evidence‐based guidelines. Randomized controlled trials will be emphasized if evidence is lacking or insufficient from those preferred sources. Authors: Delach/ Gibler Date: July 2016 New Systematic Reviews: Efficacy: Crandall C, et al. Ann Intern Med. (2014)2 The purpose of this systematic review was to update a previous review on the benefits and harms of pharmacologic treatments used to prevent fractures in at‐ risk adults.2 Three‐hundred and fifteen RCTs and systematic reviews were included.2 Five network meta‐analyses of placebo‐controlled or head‐to‐head trials found that differences in reduction of vertebral and nonvertebral fracture risk among any of the bisphosphonates, denosumab, or teriparatide were not consistent or statistically significant.2 There was also agreement amongst the meta‐analyses that raloxifene does not prevent nonvertebral fractures. In addition, there is less evidence supporting efficacy for nonvertebral fracture reduction for ibandronate than for the other bisphosphonates, denosumab, or teriparatide.2 An increase rate of atypical subtrochanteric fractures is seen in those treated with bisphosphonates but the association has only been established in observational studies, case studies, and case series.2 A meta‐analysis of 5 case‐control studies and 6 cohort studies found an overall pooled risk ratio (RR) of 1.70 (95% CI: 1.22 to 2.37).2 Data are sufficient to conclude that bisphosphonate use increases the risk for atypical femoral fractures though the strength of evidence is low.2 The risk of atypical femoral fracture is lower (30‐100 fold) than the risk of hip fracture among untreated persons with osteoporosis. Use of denosumab has also been linked to occurrences of atypical femoral fractures.2 An increased risk of esophageal cancer was seen in 2 observational studies but was not seen in 2 others.2 Several observational studies have found no increased risk or statistically significant decreases in risk for all types of cancer in general.2 A meta‐analysis of 4 studies found no statistically significant risks (OR 1.74; 95% CI: not reported) for esophageal cancer in patients with bisphosphonate treatment.2 An evaluation of teriparatide found no association with osteosarcoma after 7 years of follow‐up.2 Five studies (2 observational studies, 2 meta‐analyses, and 1 systematic review) did not find an increased risk of atrial fibrillation and 1 meta‐analysis found an increased risk of atrial fibrillation with bisphosphonate use.2 The previous review showed an increased risk for mild upper gastrointestinal side effects with use of alendronate (OR 1.07; 95% CI: 1.01 to 1.14), teriparatide (OR 3.26; 95% CI: 2.82 o 3.78), and denosumab (OR 1.74; 95% CI: 1.29 to 2.38).2 A network meta‐analysis did not find any statistically significant differences among any bisphosphonates in terms of gastrointestinal safety outcomes.2 A case‐control study found no significant relationship between oral alendronate or risedronate for the risk of subsequent hospitalizations for serious upper gastrointestinal harms (e.g., perforations, ulcers, and bleeding).2 Pooled data from 4 trials of denosumab showed an increased risk for infection (RR 1.28; 95% CI: 1.02 to 1.60).2 Twenty‐three publications and 2408
Recommended publications
  • Nitrate Prodrugs Able to Release Nitric Oxide in a Controlled and Selective
    Europäisches Patentamt *EP001336602A1* (19) European Patent Office Office européen des brevets (11) EP 1 336 602 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.7: C07C 205/00, A61K 31/00 20.08.2003 Bulletin 2003/34 (21) Application number: 02425075.5 (22) Date of filing: 13.02.2002 (84) Designated Contracting States: (71) Applicant: Scaramuzzino, Giovanni AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU 20052 Monza (Milano) (IT) MC NL PT SE TR Designated Extension States: (72) Inventor: Scaramuzzino, Giovanni AL LT LV MK RO SI 20052 Monza (Milano) (IT) (54) Nitrate prodrugs able to release nitric oxide in a controlled and selective way and their use for prevention and treatment of inflammatory, ischemic and proliferative diseases (57) New pharmaceutical compounds of general effects and for this reason they are useful for the prep- formula (I): F-(X)q where q is an integer from 1 to 5, pref- aration of medicines for prevention and treatment of in- erably 1; -F is chosen among drugs described in the text, flammatory, ischemic, degenerative and proliferative -X is chosen among 4 groups -M, -T, -V and -Y as de- diseases of musculoskeletal, tegumental, respiratory, scribed in the text. gastrointestinal, genito-urinary and central nervous sys- The compounds of general formula (I) are nitrate tems. prodrugs which can release nitric oxide in vivo in a con- trolled and selective way and without hypotensive side EP 1 336 602 A1 Printed by Jouve, 75001 PARIS (FR) EP 1 336 602 A1 Description [0001] The present invention relates to new nitrate prodrugs which can release nitric oxide in vivo in a controlled and selective way and without the side effects typical of nitrate vasodilators drugs.
    [Show full text]
  • Protocol Supplementary
    Optimal Pharmacological Management and Prevention of Glucocorticoid-Induced Osteoporosis (GIOP) Protocol for a Systematic Review and Network Meta-Analysis Supplementary Materials: Sample Search Strategy Supplementary 1: MEDLINE Search Strategy Database: OVID Medline Epub Ahead of Print, In-Process & Other Non-Indexed Citations, Ovid MEDLINE(R) Daily and Ovid MEDLINE(R) 1946 to Present Line 1 exp Osteoporosis/ 2 osteoporos?s.ti,ab,kf. 3 Bone Diseases, Metabolic/ 4 osteop?eni*.ti,ab,kf. 5 Bone Diseases/ 6 exp Bone Resorption/ 7 malabsorption.ti,ab,kf. 8 Bone Density/ 9 BMD.ti,ab,kf. 10 exp Fractures, Bone/ 11 fracture*.ti,ab,kf. 12 (bone* adj2 (loss* or disease* or resorption* or densit* or content* or fragil* or mass* or demineral* or decalcif* or calcif* or strength*)).ti,ab,kf. 13 osteomalacia.ti,ab,kf. 14 or/1-13 15 exp Glucocorticoids/ 16 exp Steroids/ 17 (glucocorticoid* or steroid* or prednisone or prednisolone or hydrocortisone or cortisone or triamcinolone or dexamethasone or betamethasone or methylprednisolone).ti,ab,kf. 18 or/15-17 19 14 and 18 20 ((glucocorticoid-induced or glucosteroid-induced or corticosteroid-induced or glucocorticosteroid-induced) adj1 osteoporos?s).ti,ab,kf. 21 19 or 20 22 exp Diphosphonates/ 23 (bisphosphon* or diphosphon*).ti,ab,kf. 24 exp organophosphates/ or organophosphonates/ 25 (organophosphate* or organophosphonate*).ti,ab,kf. 26 (alendronate or alendronic acid or Fosamax or Binosto or Denfos or Fosagen or Lendrate).ti,ab,kf. 27 (Densidron or Adrovance or Alenotop or Alned or Dronat or Durost or Fixopan or Forosa or Fosval or Huesobone or Ostemax or Oseolen or Arendal or Beenos or Berlex or Fosalen or Fosmin or Fostolin or Fosavance).ti,ab,kf.
    [Show full text]
  • Synthesis and Structural Studies of Calcium and Magnesium Diphosphonate Compounds
    Syracuse University SURFACE Syracuse University Honors Program Capstone Syracuse University Honors Program Capstone Projects Projects Spring 5-1-2012 Synthesis and Structural Studies of Calcium and Magnesium Diphosphonate Compounds Seungmo Suh Follow this and additional works at: https://surface.syr.edu/honors_capstone Part of the Biochemistry Commons Recommended Citation Suh, Seungmo, "Synthesis and Structural Studies of Calcium and Magnesium Diphosphonate Compounds" (2012). Syracuse University Honors Program Capstone Projects. 151. https://surface.syr.edu/honors_capstone/151 This Honors Capstone Project is brought to you for free and open access by the Syracuse University Honors Program Capstone Projects at SURFACE. It has been accepted for inclusion in Syracuse University Honors Program Capstone Projects by an authorized administrator of SURFACE. For more information, please contact [email protected]. 1 Chapter 1: Background 1.1 Introduction The chemistry of transition metal phosphonates has enormous potential and diverse applications such as gas separation, gas storage or catalyst systems which have been explored in detail.1-6 In contrast, analogous chemistry with the s- block elements has received only a little attention. Calcium was the priority element in our study due to its bioactive properties. Previous studies proved that phosphonates can possibly be used as bone repair materials. 1 The possible applications are only possible with structures with pores or channels for other molecules to enter. Thus, the control of the shape and
    [Show full text]
  • (GE) Review of TA160, 161 and 204; Technologies for The
    NATIONAL INSTITUTE FOR HEALTH AND CARE EXCELLENCE GUIDANCE EXECUTIVE (GE) Review of TA160, 161 and 204; Technologies for the primary and secondary prevention of osteoporotic fractures1 TA160 and TA161 give guidance on alendronate, risedronate, etidronate, strontium ranelate, raloxifene and teriparatide, and were re-issued after the Judicial Review in January 2011. TA204 gives guidance on denosumab and was issued in October 2010. TA160 and TA161 were to be considered for review after the short clinical guideline on risk assessment has been published. TA204 was to be considered for review at the same time that TA160 and TA161 are considered for review. In August 2012 the clinical guideline on assessing the risk of fragility fractures in people with osteoporosis was published (CG146). In July 2012 Guidance Executive agreed to reschedule the review proposal for the above technology appraisals so that we can explore how treatment intervention thresholds from the technology appraisals can be aligned to the assessment of absolute fracture risk recommended in CG146, and to carry out a feasibility study through NICE’s Decision Support Unit. 1 Review of TA160; Alendronate, etidronate, risedronate, raloxifene and strontium ranelate for the primary prevention of osteoporotic fragility fractures in postmenopausal women, TA161; Alendronate, etidronate, risedronate, raloxifene, strontium ranelate and teriparatide for the secondary prevention of osteoporotic fragility fractures in postmenopausal women, and TA204; Denosumab for the prevention of osteoporotic
    [Show full text]
  • WO 2015/123734 Al 27 August 2015 (27.08.2015) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2015/123734 Al 27 August 2015 (27.08.2015) P O P C T (51) International Patent Classification: (74) Agent: FB RICE; Level 23, 44 Market Street, Sydney, C08B 3/02 (2006.01) C07H 13/06 (2006.01) New South Wales 2000 (AU). C07H 13/04 (2006.0 1) A61K 9/14 (2006.0 1) (81) Designated States (unless otherwise indicated, for every (21) International Application Number: kind of national protection available): AE, AG, AL, AM, PCT/AU2015/050069 AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, (22) International Filing Date: DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, 23 February 2015 (23.02.2015) HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, (25) Filing Language: English KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (26) Publication Language: English PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (30) Priority Data: SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, 2014900566 2 1 February 2014 (21.02.2014) AU TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (71) Applicants: THE UNIVERSITY OF SYDNEY (84) Designated States (unless otherwise indicated, for every [AU/AU]; Sydney, Sydney, New South Wales 2006 (AU).
    [Show full text]
  • Date Database Search Strategy Filters Results Results After Duplicates
    Date Database Search Strategy Filters Results Results after Duplicates Removed 12/12/2018 PubMed (("Patient Participation"[Mesh] OR "Patient Participation" OR “Patient Filters: 120 108 Involvement” OR “Patient Empowerment” OR “Patient Participation Rates” English OR “Patient Participation Rate” OR “Patient Activation” OR “Patient Engagement” OR "Refusal to Participate"[Mesh] OR "Refusal to Participate" OR "Self Care"[Mesh] OR "Self Care" OR "Self-Care" OR “Well-being” OR Wellbeing OR “well being” OR "Walking"[Mesh] OR Walking OR Walk OR Walked OR Ambulation OR "Gait"[Mesh] OR Gait OR Gaits OR "Mobility Limitation"[Mesh] OR "Mobility Limitation" OR Mobility OR “Mobility Limitations” OR “Ambulation Difficulty” OR “Ambulation Difficulties” OR “Difficulty Ambulation” OR “Ambulatory Difficulty” OR “Ambulatory Difficulties” OR “Difficulty Walking” OR "Dependent Ambulation"[Mesh] OR "Dependent Ambulation" OR “functional status” OR “functional state” OR "Community Participation"[Mesh] OR "Community Participation" OR “Community Involvement” OR “Community Involvements” OR “Consumer Participation” OR “Consumer Involvement” OR “Public Participation” OR “Community Action” OR “Community Actions” OR "Social Participation"[Mesh] OR "Social Participation" OR "Activities of Daily Living"[Mesh] OR "Activities of Daily Living" OR ADL OR “Daily Living Activities” OR “Daily Living Activity” OR “Chronic Limitation of Activity” OR "Quality of Life"[Mesh] OR "Quality of Life" OR “Life Quality” OR “Health- Related Quality Of Life” OR “Health Related Quality Of
    [Show full text]
  • Phvwp Class Review Bisphosphonates and Osteonecrosis of the Jaw (Alendronic Acid, Clodronic Acid, Etidronic Acid, Ibandronic
    PhVWP Class Review Bisphosphonates and osteonecrosis of the jaw (alendronic acid, clodronic acid, etidronic acid, ibandronic acid, neridronic acid, pamidronic acid, risedronic acid, tiludronic acid, zoledronic acid), SPC wording agreed by the PhVWP in February 2006 Section 4.4 Pamidronic acid and zoledronic acid: “Osteonecrosis of the jaw has been reported in patients with cancer receiving treatment regimens including bisphosphonates. Many of these patients were also receiving chemotherapy and corticosteroids. The majority of reported cases have been associated with dental procedures such as tooth extraction. Many had signs of local infection including osteomyelitis. A dental examination with appropriate preventive dentistry should be considered prior to treatment with bisphosphonates in patients with concomitant risk factors (e.g. cancer, chemotherapy, radiotherapy, corticosteroids, poor oral hygiene). While on treatment, these patients should avoid invasive dental procedures if possible. For patients who develop osteonecrosis of the jaw while on bisphosphonate therapy, dental surgery may exacerbate the condition. For patients requiring dental procedures, there are no data available to suggest whether discontinuation of bisphosphonate treatment reduces the risk of osteonecrosis of the jaw. Clinical judgement of the treating physician should guide the management plan of each patient based on individual benefit/risk assessment.” Remaining bisphosphonates: “Osteonecrosis of the jaw, generally associated with tooth extraction and/or local infection (including osteomyelits) has been reported in patients with cancer receiving treatment regimens including primarily intravenously administered bisphophonates. Many of these patients were also receiving chemotherapy and corticosteroids. Osteonecrosis of the jaw has also been reported in patients with osteoporosis receiving oral bisphophonates. A dental examination with appropriate preventive dentistry should be considered prior to treatment with bisphosphonates in patients with concomitant risk factors (e.g.
    [Show full text]
  • Screening to Prevent Osteoporotic Fractures: an Evidence Review for the U.S
    Evidence Synthesis Number 162 Screening to Prevent Osteoporotic Fractures: An Evidence Review for the U.S. Preventive Services Task Force Prepared for: Agency for Healthcare Research and Quality U.S. Department of Health and Human Services 5600 Fishers Lane Rockville, MD 20857 www.ahrq.gov Contract No. HHSA-290-2012-00015-I, Task Order No. 6 Prepared by: RTI International–University of North Carolina Evidence-based Practice Center Research Triangle Park, NC Investigators: Meera Viswanathan, PhD Shivani Reddy, MD, MSc Nancy Berkman, PhD Katie Cullen, BA Jennifer Cook Middleton, PhD Wanda K. Nicholson, MD, MPH, MBA Leila C. Kahwati, MD, MPH AHRQ Publication No. 15-05226-EF-1 October 2017 This report is based on research conducted by the RTI International–University of North Carolina Evidence-based Practice Center (EPC) under contract to the Agency for Healthcare Research and Quality (AHRQ), Rockville, MD (Contract No. HHSA-290-2012-00015-I, Task Order No. 6). The findings and conclusions in this document are those of the authors, who are responsible for its contents, and do not necessarily represent the views of AHRQ. Therefore, no statement in this report should be construed as an official position of AHRQ or of the U.S. Department of Health and Human Services. The information in this report is intended to help health care decisionmakers—patients and clinicians, health system leaders, and policymakers, among others—make well-informed decisions and thereby improve the quality of health care services. This report is not intended to be a substitute for the application of clinical judgment. Anyone who makes decisions concerning the provision of clinical care should consider this report in the same way as any medical reference and in conjunction with all other pertinent information (i.e., in the context of available resources and circumstances presented by individual patients).
    [Show full text]
  • Etidronate 1097 Osteonorm; Osteostab; Malaysia: Bonefos; Mex.: Bonefos; Neth.: Pharmacopoeias
    Clodronate/Etidronate 1097 Osteonorm; Osteostab; Malaysia: Bonefos; Mex.: Bonefos; Neth.: Pharmacopoeias. In Eur. (see p.vii), Jpn, and US. of cardiorespiratory failure, secondary to the acute respiratory Bonefos; Ostac; Norw.: Bonefos; Philipp.: Bonefos; Pol.: Bonefos; Sindro- Ph. Eur. 6.2 (Etidronate Disodium). A white or yellowish, hy- distress syndrome, despite aggressive supportive measures.1 nat; Port.: Bonefos; Ostac; Rus.: Bonefos (Бонефос); S.Afr.: Bonephos; Ostac†; Singapore: Bonefos; Spain: Bonefos; Hemocalcin†; Mebonat†; groscopic powder. Freely soluble in water; practically insoluble 1. Coakley G, Isenberg DA. Toxic epidermal necrolysis, pancyto- Swed.: Bonefos; Ostac; Switz.: Bonefos; Ostac; Thai.: Bonefos; Turk.: in alcohol and in acetone. A 1% solution in water has a pH of 4.2 penia and adult respiratory syndrome. Br J Rheumatol 1995; 34: Bonefos; UK: Bonefos; Clasteon; Loron. to 5.2. Store in airtight containers. 798. USP 31 (Etidronate Disodium). A white powder that may con- Hypersensitivity. Allergic reactions to bisphosphonates do tain lumps. Freely soluble in water; practically insoluble in alco- occur but appear to be rare (see p.1091). hol. Store in airtight containers. pH of a 1% solution in water is Denosumab (USAN, rINN) between 4.2 and 5.2. AMG-162; Dénosumab; Denosumabum. Interactions As for the bisphosphonates in general, p.1091. Денозумаб Adverse Effects, Treatment, and Precau- CAS — 615258-40-7. tions Anti-inflammatory drugs. For a lack of apparent interaction As for the bisphosphonates in general, p.1089. Unlike between cyclical etidronate and corticosteroids or NSAIDs see Profile under Effects on the Gastrointestinal Tract, above. Denosumab is a human monoclonal antibody that specifically the newer bisphosphonates etidronate produces targets the receptor activator of nuclear factor-kappa B ligand marked impairment of bone mineralisation at high Pharmacokinetics (RANKL), a mediator of the resorptive phase of bone remodel- therapeutic doses.
    [Show full text]
  • June 2011 Circular No
    7 th June 2011 Circular No. P06/2011 Dear Healthcare Professional, Re: European Medicines Agency finalises review of bisphosphonates and atypical stress fractures Bisphosphonates have been authorised in the EU for hypercalcaemia and the prevention of bone problems in patients with cancer since the early 1990s. They have also been available since the mid 1990s for the treatment of osteoporosis and Paget’s disease of the bone. Bisphosphonates include alendronic acid, clodronic acid, etidronic acid, ibandronic acid, neridronic acid, pamidronic acid, risedronic acid, tiludronic acid and zoledronic acid. They are available in the EU as tablets and as solutions for infusion under various trade names and as generic medicines2. In 2008, the CHMP’s Pharmacovigilance Working Party (PhVWP) noted that alendronic acid was associated with an increased risk of atypical fracture of the femur (thigh bone) that developed with low or no trauma. As a result, a warning was added to the product information of alendronic acid-containing medicines across Europe. The PhVWP also concluded at the time that it was not possible to rule out the possibility that the effect could be a class effect (an effect common to all bisphosphonates), and decided to keep the issue under close review. In April 2010, the PhVWP noted that further data from both the published literature and post- marketing reports were now available that suggested that atypical stress fractures of the femur may be a class effect. The working party concluded that there was a need to conduct a further review to determine if any regulatory action was necessary. Page 1 of 3 Medicines Authority 203 Level 3, Rue D'Argens, Gzira, GZR 1368 – Malta.
    [Show full text]
  • Screening to Prevent Osteoporotic Fractures: Updated Evidence Report and Systematic Review for the US Preventive Services Task Force
    Supplementary Online Content Viswanathan M, Reddy S, Berkman N, et al. Screening to prevent osteoporotic fractures: updated evidence report and systematic review for the US Preventive Services Task Force. JAMA. doi:10.1001/jama.2018.6537 eMethods 1. eMethods 2. eTables 1-62. eFigures 1-34. eReferences. This supplementary material has been provided by the authors to give readers additional information about their work. © 2018 American Medical Association. All rights reserved. Downloaded From: https://jamanetwork.com/ on 09/29/2021 189 eMethods 1. Literature Search Strategies for Primary Literature 190 Pubmed: Screening and Treatment Number Results #1 Search ("Osteoporosis"[Mesh] OR "Fractures, Bone"[Mesh] OR "Bone Density"[Mesh]) #2 Search ("Osteoporosis"[Mesh] OR "Fractures, Bone"[Mesh] OR "Bone Density"[Mesh]) Filters: Publication date from 2009/11/01; Humans; English; Adult: 19+ years #3 Search ("Mass Screening"[Mesh] OR "Risk Assessment"[Mesh]) #4 Search (#5 AND #6) #5 Search (#5 AND #6) Filters: Systematic Reviews #6 Search (("Controlled Clinical Trial" [Publication Type] OR "Randomized Controlled Trial" [Publication Type] OR "Meta-Analysis" [Publication Type] OR "Cohort Studies"[Mesh]) OR "Case- Control Studies"[Mesh] OR "Sensitivity and Specificity"[Mesh]) #7 Search (#7 AND #9) #8 Search (#8 OR #10) #9 Search ("Osteoporosis"[Mesh] OR "Bone Density"[Mesh] OR "Calcaneus"[Mesh]) #10 Search ("Osteoporosis"[Mesh] OR "Bone Density"[Mesh] OR "Calcaneus"[Mesh])Filters: Humans; English; Adult: 19+ years #11 Search ("Osteoporosis"[Mesh] OR
    [Show full text]
  • Pharmaco-Economic Study for the Prescribing of Prevention and Treatment of Osteoporosis
    Technical Report 2: An analysis of the utilisation and expenditure of medicines dispensed for the prophylaxis and treatment of osteoporosis Technical report to NCAOP/HSE/DOHC By National Centre for Pharmacoeconomics An analysis of the utilisation and expenditure of medicines dispensed for the prophylaxis and treatment of osteoporosis February 2007 National Centre for Pharmacoeconomics Executive Summary 1. The number of prescriptions for the treatment and prophylaxis of osteoporosis has increased from 143,261 to 415,656 on the GMS scheme and from 52,452 to 136,547 on the DP scheme over the time period 2002 to 2005. 2. In 2005 over 60,000 patients received medications for the prophylaxis and treatment of osteoporosis on the GMS scheme with an associated expenditure of €16,093,676. 3. Approximately 80% of all patients who were dispensed drugs for the management of osteoporosis were prescribed either Alendronate (Fosamax once weekly) or Risedronate (Actonel once weekly) respectively. 4. On the DP scheme, over 27,000 patients received medications for the prophylaxis and treatment of osteoporosis in 2005 with an associated expenditure of € 6,028,925. 5. The majority of patients treated with drugs affecting bone structure were over 70 years e.g. 12,224 between 70 and 74yrs and 25,518 over 75yrs. 6. In relation to changes in treatment it was identified from the study that approximately 8% of all patients who are initiated on one treatment for osteoporosis are later switched to another therapy. 7. There was a statistically significant difference between the use of any osteoporosis medication and duration of prednisolone (dose response, chi- square test, p<0.0001).
    [Show full text]