Administration Guide - Linux File System Idataagent

Total Page:16

File Type:pdf, Size:1020Kb

Administration Guide - Linux File System Idataagent Administration Guide - Linux File System iDataAgent Administration Guide - Linux File System iDataAgent TABLE OF CONTENTS OVERVIEW Introduction Key Features Simplified Data Management Point-In-Time Recovery SnapProtect Backup Backup and Recovery Failovers Efficient Job Management and Reporting Block Level Deduplication Add-On Components SRM for Unix File System 1-Touch Add-On Archiver Content Indexing and Search Desktop Browse Terminology SYSTEM REQUIREMENTS SUPPORTED FEATURES GETTING STARTED GETTING STARTED - DEPLOYMENT Where to Install Method 1: Interactive Install Method 2: Install Software from CommCell Console GETTING STARTED - DEPLOYMENT ON A CLUSTER Where to Install Installing the Linux File System iDataAgent - Clustered Environment GETTING STARTED - DEPLOYMENT ON A VERITAS CLUSTER Where to Install Installing the Linux File System iDataAgent - Veritas Clustered Environment GETTING STARTED CONFIGURATION GETTING STARTED BACKUP Perform a Backup GETTING STARTED RESTORE Perform a Restore ADVANCED ADVANCED CONFIGURATION Understanding the CommCell Console Configuring User Defined Backup Sets Creating a Backup Set for On Demand Backups Creating a Backup Set for Wild Card Support Configuring User Defined Subclients Creating a Subclient to Backup Specific Files Page 1 of 267 Administration Guide - Linux File System iDataAgent Creating a Subclient to Backup Symbolic Links Creating a Subclient to Backup Raw Devices Configuring Backups for Hard Links Configuring Backups of NFS-Mounted File Systems Configuring Backups for Locked Files Excluding Locked Files in NFS Mounted File Systems Configuring Backups for Macintosh Files Excluding Job Results Folder from Backups Including Skipped File Systems in Backups Enabling Backups for Skipped File Systems Adding the Skipped File System to Subclient Content Configuring Filters for Backups Filtering Files from a Backup Configuring Exclusions to Filters Deleting a Filter Configuring the Scan Method for Detecting Changed Files Configuring the Kernel Parameters Configuring Multiple Streams for Backups Setting the Maximum Number of Data readers Configuring the Index for Backups Creating a New Index on a Full Backup Converting to a Full Backup on Indexing Failures Configuring Incremental/Differential Backups using Ctime and Mtime Configuring Pre/Post Processing for Backups Setting Up Pre/Post Processes Setting Up Post Processes To Run During Failures Tips for Creating Scripts Configuring Sparse Files for Restores Modifying an Agent, Backup Set or Subclient Deleting an Agent, Backup Set or Subclient ADVANCED BACKUP Full Backups Incremental Backups Differential Backups Synthetic Full Backups Running Synthetic Full Backups Running an Incremental Backup Before or After a Synthetic Full Backup Verifying Synthetic Full Backups Ignoring Errors in Synthetic Full Backups Accelerated Synthetic Full Backups (DASH Full) Backing up Mount Points Scheduling A Backup Performing an On Demand Backup Managing Jobs Restarting Jobs Controlling Jobs Additional Options ADVANCED RESTORE Performing a Direct Restore Restoring Data Using Regular Expressions Supported Wildcards in Regular Expressions Performing an Out-of-Place Restore Restoring to Different Folder on the Same Client Restoring data to a Different Client Performing a Cross-Platform Restore Restoring to NFS-Mounted File System Page 2 of 267 Administration Guide - Linux File System iDataAgent Renaming Files on Restore Overwriting Data During Restores Restoring Data Only If It Exists on the Destination Restoring by Jobs Restoring all the data backed up During a Job Restoring Specific Data Backed up during a Job Restoring From a Failed or Killed Job Resubmitting a Restore Job Filtering Data from Restores Supported Wildcards in Filters Restoring Data Using a Map File Adding Files and Folders with Unicode Characters to a Map File Restoring Using a MAP File Combining Browse and Restore with the MAP File Restore Restoring Deleted Files Setting Up Pre-Post Processes Restoring Sparse Files Restoring Raw Devices Restoring Raw Device Files as Regular Files Restoring Macintosh Files Setting Up Resource Fork Data Restore for all Macintosh Files Restoring Resource Fork Data for a Specific Job Excluding ACLs from Restores Browsing Data Latest Data Data Before a Specified Time Data Between a Specified Time Listing Media Listing Media for a Subclient Listing Media for a Backup Set Scheduling a Restore Manage Restore Jobs Restarting Jobs Controlling Jobs Additional Restore Options DATA AGING DISASTER RECOVERY Planning for a Disaster Recovery Disaster Recovery of the Linux File System ADDITIONAL OPERATIONS Audit Trail Storage Policy Subclient Policy Schedule Policy Auxiliary Copy Operation Window Operating System and Application Upgrades Global Filters Erase Backup Data Uninstalling Components Online Help Links BEST PRACTICES Page 3 of 267 Administration Guide - Linux File System iDataAgent FREQUENTLY ASKED QUESTIONS TROUBLESHOOTING Backups Restores ADD-ON COMPONENTS ERASE BACKED UP DATA 1-TOUCH FOR LINUX Deployment Configuration Recovery Troubleshooting ONEPASS AGENT Deployment Configuration Archive Recover Advanced Configuration Advanced Archive Advanced Recover Troubleshooting FAQs DESKTOP BROWSE User Administrator ADVANCED REPORTING AGENTLESS SRM Overview Pre-Requisites Configuration Reports supported by Agentless SRM Summaries displayed for Agentless SRM Considerations Registry Keys for Agentless SRM SRM FOR UNIX FILE SYSTEM Overview Configuration Generate SRM Reports Send a Notification when an SRM Report Has Run Getting Started with Unix File System Reports Report Features Available Columns Cost History and Usage Reports Filter Page 4 of 267 Administration Guide - Linux File System iDataAgent File Level Analytics Summaries Page 5 of 267 Administration Guide - Linux File System iDataAgent Overview - Unix/Linux File System iDataAgents TABLE OF CONTENTS WHERE TO GO NEXT Introduction Linux Walks you through the process of installing and configuring Key Features the File System iDataAgent for Linux. Simplified Data Management AIX Point-In-Time Recovery Walks you through the process of installing and configuring SnapProtect Backup the File System iDataAgent for AIX Backup and Recovery Failovers FreeBSD Efficient Job Management and Reporting Walks you through the process of installing and configuring Block Level Deduplication the File System iDataAgent for FreeBSD. Add-On Components HPUX SRM for Unix File System Walks you through the process of installing and configuring the File System iDataAgent for HPUX. 1-Touch OnePass Agent Solaris Content Indexing and Search Walks you through the process of installing and configuring the File System iDataAgent for Solaris. Desktop Browse Tru64 Terminology Walks you through the process of installing and configuring the File System iDataAgent for Tru64. INTRODUCTION Simpana software provides a simplified end-to-end protection of file system data residing on all the Unix computers in your enterprise. In addition to complete protection of file system data for disaster recovery, it also provides a robust and comprehensive backup and recovery solution with significant speed performance and efficient use of disk and tape drives. It also assists you in full system rebuilds and eliminates recovery failures. KEY FEATURES The Unix File System iDataAgents offers the following key features: SIMPLIFIED DATA MANAGEMENT The Unix File System iDataAgents enables easy management of all the UNIX systems in your environment, by providing a singular approach to manage the data using the same unified console and infrastructure. POINT-IN-TIME RECOVERY In the event of a serious system failure, such as the breakdown of hardware, software, or operating systems, the Unix File System iDataAgent provides point-in-time recovery of files at any given time. SNAPPROTECT BACKUP SnapProtect backup enables you to create a point-in-time snapshot by temporarily quiescing the data, taking a snapshot, and then resuming live operations. SnapProtect backup works in conjunction with hardware snapshot engines. BACKUP AND RECOVERY FAILOVERS In the event that a MediaAgent used for the backup or recovery operation fails, it is automatically resumed on alternate MediaAgents. In such cases, the backup or restore job will not restart from the beginning, but will resume from the point of failure. This is especially useful for backups and restores of large amount of file system data. In the event, that a network goes down, the backup and recovery jobs are resumed on alternate data paths. Similarly, in the event of a device failure, the jobs are automatically switched to alternate disk and tape drives. EFFICIENT JOB MANAGEMENT AND REPORTING You can view and verify the status of backup and recovery operations from the Job Controller and Event Viewer windows within the CommCell Console. You can also track the status of the jobs using Reports, which can be saved and easily distributed. Reports can be generated for different aspects of data management. Page 6 of 267 Administration Guide - Linux File System iDataAgent You also have the flexibility to customize the reports to display only the required data and save them to any specified location in different formats. For example, you can create a backup job summary report to view at-a-glance the completed backup jobs. In addition, you can also schedule these reports to be generated and send them on email without user intervention. BLOCK LEVEL DEDUPLICATION Deduplication provides a smarter way of storing data by identifying and eliminating the
Recommended publications
  • Hetfs: a Heterogeneous File System for Everyone
    HetFS: A Heterogeneous File System for Everyone Georgios Koloventzos1, Ramon Nou∗1, Alberto Miranda∗1, and Toni Cortes1;2 1 Barcelona Supercomputing Center (BSC) Barcelona, Spain 2 Universitat Polit`ecnicade Catalunya Barcelona, Spain georgios.koloventzos,ramon.nou,alberto.miranda,toni.cortes}@bsc.es Abstract Storage devices have been getting more and more diverse during the last decade. The advent of SSDs made it painfully clear that rotating devices, such as HDDs or magnetic tapes, were lacking in regards to response time. However, SSDs currently have a limited number of write cycles and a significantly larger price per capacity, which has prevented rotational technologies from begin abandoned. Additionally, Non-Volatile Memories (NVMs) have been lately gaining traction, offering devices that typically outperform NAND-based SSDs but exhibit a full new set of idiosyncrasies. Therefore, in order to appropriately support this diversity, intelligent mech- anisms will be needed in the near-future to balance the benefits and drawbacks of each storage technology available to a system. In this paper, we present a first step towards such a mechanism called HetFS, an extension to the ZFS file system that is capable of choosing the storage device a file should be kept in according to preprogrammed filters. We introduce the prototype and show some preliminary results of the effects obtained when placing specific files into different devices. 1 Introduction Storage devices have shown a significant evolution in the latest decade. As the improvements in the latencies of traditional hard disk drives (HDDs) have dimin- ished due to the mechanical limitations inherent to their design, other technolo- gies have been emerging to try and take their place.
    [Show full text]
  • Flexible Lustre Management
    Flexible Lustre management Making less work for Admins ORNL is managed by UT-Battelle for the US Department of Energy How do we know Lustre condition today • Polling proc / sysfs files – The knocking on the door model – Parse stats, rpc info, etc for performance deviations. • Constant collection of debug logs – Heavy parsing for common problems. • The death of a node – Have to examine kdumps and /or lustre dump Origins of a new approach • Requirements for Linux kernel integration. – No more proc usage – Migration to sysfs and debugfs – Used to configure your file system. – Started in lustre 2.9 and still on going. • Two ways to configure your file system. – On MGS server run lctl conf_param … • Directly accessed proc seq_files. – On MSG server run lctl set_param –P • Originally used an upcall to lctl for configuration • Introduced in Lustre 2.4 but was broken until lustre 2.12 (LU-7004) – Configuring file system works transparently before and after sysfs migration. Changes introduced with sysfs / debugfs migration • sysfs has a one item per file rule. • Complex proc files moved to debugfs • Moving to debugfs introduced permission problems – Only debugging files should be their. – Both debugfs and procfs have scaling issues. • Moving to sysfs introduced the ability to send uevents – Item of most interest from LUG 2018 Linux Lustre client talk. – Both lctl conf_param and lctl set_param –P use this approach • lctl conf_param can set sysfs attributes without uevents. See class_modify_config() – We get life cycle events for free – udev is now involved. What do we get by using udev ? • Under the hood – uevents are collect by systemd and then processed by udev rules – /etc/udev/rules.d/99-lustre.rules – SUBSYSTEM=="lustre", ACTION=="change", ENV{PARAM}=="?*", RUN+="/usr/sbin/lctl set_param '$env{PARAM}=$env{SETTING}’” • You can create your own udev rule – http://reactivated.net/writing_udev_rules.html – /lib/udev/rules.d/* for examples – Add udev_log="debug” to /etc/udev.conf if you have problems • Using systemd for long task.
    [Show full text]
  • ECE 598 – Advanced Operating Systems Lecture 19
    ECE 598 { Advanced Operating Systems Lecture 19 Vince Weaver http://web.eece.maine.edu/~vweaver [email protected] 7 April 2016 Announcements • Homework #7 was due • Homework #8 will be posted 1 Why use FAT over ext2? • FAT simpler, easy to code • FAT supported on all major OSes • ext2 faster, more robust filename and permissions 2 btrfs • B-tree fs (similar to a binary tree, but with pages full of leaves) • overwrite filesystem (overwite on modify) vs CoW • Copy on write. When write to a file, old data not overwritten. Since old data not over-written, crash recovery better Eventually old data garbage collected • Data in extents 3 • Copy-on-write • Forest of trees: { sub-volumes { extent-allocation { checksum tree { chunk device { reloc • On-line defragmentation • On-line volume growth 4 • Built-in RAID • Transparent compression • Snapshots • Checksums on data and meta-data • De-duplication • Cloning { can make an exact snapshot of file, copy-on- write different than link, different inodles but same blocks 5 Embedded • Designed to be small, simple, read-only? • romfs { 32 byte header (magic, size, checksum,name) { Repeating files (pointer to next [0 if none]), info, size, checksum, file name, file data • cramfs 6 ZFS Advanced OS from Sun/Oracle. Similar in idea to btrfs indirect still, not extent based? 7 ReFS Resilient FS, Microsoft's answer to brtfs and zfs 8 Networked File Systems • Allow a centralized file server to export a filesystem to multiple clients. • Provide file level access, not just raw blocks (NBD) • Clustered filesystems also exist, where multiple servers work in conjunction.
    [Show full text]
  • Onetouch 4 Lite USB Mac User Guide
    Contents Getting Started . .1 Using the Formatting Tool . .1 Preparing the Software Manually . .4 Installing the Software . .9 Managing Your Drives . .15 Customizing the OneTouch Button . .15 Running Diagnostics . .18 Updating Your Software . .19 Backing Up & Restoring Folders . .22 Creating Backup Plans . .22 Using Simple Backup . .22 Creating a Custom Backup Plan . .26 Managing Backup Plans . .33 Editing Backup Settings . .33 Deleting Backup Plans . .36 Backing Up Manually . .37 Restoring Files . .39 OneTouch II and III Users . .42 Managing Security . .42 Using DrivePass . .42 Enabling DrivePass . 42 Unlocking Your OneTouch Drive . 45 Removing DrivePass . 50 Changing Your DrivePass Password . 52 If You Forget Your Password... .55 Synchronizing Folders . .60 Using Pre-configured Sync . .61 Using Custom Sync . .61 Completing the Sync . .64 Maxtor OneTouch IV i Removing Folders from Sync . .65 Checking Sync Status . .65 Synchronizing Manually . .66 Using the Maxtor Synchronization Window . .66 Using Automatic Overwrite . 68 Using RAID . .68 Frequently Asked Questions . .76 Index . i 072407 Maxtor OneTouch IV ii Getting Started The Maxtor OneTouch 4 drive offers these features: • Backup & Restore to protect your data • A customized OneTouch button to quickly open a frequently-used program If you are a OneTouch II or III user, you also have access to features available on that drive: • Sync to synchronize one or more folders between two or more computers • Security settings to password-protect your drive The Maxtor OneTouch software is loaded on your OneTouch drive. Because the software is configured for a Windows operating system, the software must be prepared for installation on your Macintosh. Using the Formatting Tool The Mac OneTouch 4 Formatting tool automatically prepares the Maxtor Manager software for installation on your Macintosh, To use the Mac OneTouch 4 Formatting Tool, Step 1: Connect your OneTouch 4 drive to your computer.
    [Show full text]
  • Partitioner Och Filsystem 2
    Partitioner och filsystem 2 File systems FAT Unix-like NTFS Vad är ett filsystem? • Datorer behöver en metod för att lagra och hämta data… • Referensmodell för filsystem (Carrier) – Filsystem kategori • Layout och storleksinformation – Innehålls kategori • Kluster och block – data enheter – Metadata kategori • Tidsinformation, storlek, access kontroll • Adresser till allokerade data enheter – Filnamn kategori • Oftast ihop-kopplad med metadata – Applikations kategori • Quota • Journaler • De modernaste påminner mycket om relations databaser Windows • NTFS (New Technology File System) – 6 versioner finns, de nyaste är v3.0 (Windows 2000) och v3.1 (XP, 2003, Vista, 2008, 7), kallas även 5.0, 5.1, 5.2, 6.0 och 6.1 (efter OS version) – Stöd för unicode, säkerhet, mm. - är mycket mer komplext än FAT! – http://en.wikipedia.org/wiki/Ntfs • FAT 12/16/32, VFAT (långa filnamn i Win95) – Används fortfarande men är inte effektivt för större lagringskapaciteter (klusterstorleken) – Långsammare access än NTFS • Windows Future Storage (WinFS) inställt projekt, enligt rykten var det en SQL-databas som ligger ovanpå ett NTFS filsystem – Läs mer på: http://www.ntfs.com/ – Och: http://en.wikipedia.org/wiki/WinFS FAT12, 16 och 32 • FAT12, finns på floppy diskar – Begränsad lagringskapacitet – Designat för MS-DOS 1.0 • FAT16, var designat för större diskar – Äldre OS använde detta • MS-DOS 3.0, Win95 OSR1, NT 3.5 och NT 4.0 – Max diskstorlek 2 GB • FAT32 kom när diskar större än 2GB kom – Vissa äldre och alla nya OS kan använda FAT32 • Windows 98/Me/2000/XP/2003/Vista/7 och 2008 • Begränsningar med FAT32 – Största formaterabara volymen är 32GB (större volymer kan dock användas, < 16 TiB) – Begränsade features vad gäller komprimering, kryptering, säkerhet och hastighet jämfört mot NTFS • http://en.wikipedia.org/wiki/FAT_file_system exFAT • exFAT (Extended File Allocation Table, a.k.a.
    [Show full text]
  • [13주차] Sysfs and Procfs
    1 7 Computer Core Practice1: Operating System Week13. sysfs and procfs Jhuyeong Jhin and Injung Hwang Embedded Software Lab. Embedded Software Lab. 2 sysfs 7 • A pseudo file system provided by the Linux kernel. • sysfs exports information about various kernel subsystems, HW devices, and associated device drivers to user space through virtual files. • The mount point of sysfs is usually /sys. • sysfs abstrains devices or kernel subsystems as a kobject. Embedded Software Lab. 3 How to create a file in /sys 7 1. Create and add kobject to the sysfs 2. Declare a variable and struct kobj_attribute – When you declare the kobj_attribute, you should implement the functions “show” and “store” for reading and writing from/to the variable. – One variable is one attribute 3. Create a directory in the sysfs – The directory have attributes as files • When the creation of the directory is completed, the directory and files(attributes) appear in /sys. • Reference: ${KERNEL_SRC_DIR}/include/linux/sysfs.h ${KERNEL_SRC_DIR}/fs/sysfs/* • Example : ${KERNEL_SRC_DIR}/kernel/ksysfs.c Embedded Software Lab. 4 procfs 7 • A special filesystem in Unix-like operating systems. • procfs presents information about processes and other system information in a hierarchical file-like structure. • Typically, it is mapped to a mount point named /proc at boot time. • procfs acts as an interface to internal data structures in the kernel. The process IDs of all processes in the system • Kernel provides a set of functions which are designed to make the operations for the file in /proc : “seq_file interface”. – We will create a file in procfs and print some data from data structure by using this interface.
    [Show full text]
  • ® Apple® A/UXTM Release Notes Version 1.0 Ii APPLE COMPUTER, INC
    .® Apple® A/UXTM Release Notes Version 1.0 Ii APPLE COMPUTER, INC. UNIBUS, VAX, VMS, and VT100 are trademarks of Digital © Apple Computer, Inc., 1986 Equipment Corporation. 20525 Mariani Ave. Cupertino, California 95014 Simultaneously published in the (408) 996-1010 United States and Canada. Apple, the Apple logo, APPLE'S SYSTEM V AppleTalk, ImageWriter, IMPLEMENTATION A/UX LaserWriter, Macintosh, RELEASE 1.0 RUNNING ON A MacTerminal, and ProDOS are MACINTOSH II COMPUTER registered trademarks of Apple HAS BEEN TESTED BY THE Computer, Inc. AT&T-IS' SYSTEM V VERIFICATION SUITE AND Apple Desktop Bus, A!UX, CONFORMS TO ISSUE 2 OF EtherTalk, and Finder are AT&T-IS' SYSTEM V trademarks of Apple Computer, INTERFACE DEFINITION Inc. BASE PLUS KERNEL Ethernet is a registered EXTENSIONS. trademark of Xerox Corporation. IBM is a registered trademark, and PC-DOS is a trademark, of International Business Machines, Inc. - ITC Avant Garde Gothic, ITC Garamond, and ITC Zapf Dingbats are registered trademarks of International Typeface Corporation. Microsoft and MS-DOS are registered trademarks of Microsoft Corporation. NFS is a registered trademark, and Sun Microsystems is a trademark, of Sun Microsystems, Inc. NuBus is a trademark of Texas Instruments. POSTSCRIPT is a registered trademark, and TRANSCRIPT is a trademark, of Adobe Systems Incorporated. UNIX is a registered trademark of AT&T Information Systems. Introduction to A/UX Release Notes, Version 1.0 These release notes contain late-breaking information about release 1.0 of the A!UXI'M software for the Apple® Macintosh® II computer. This package contains two kinds of materials: o Specific information that was not available in time to be incorporated into the printed manuals.
    [Show full text]
  • Filesystems HOWTO Filesystems HOWTO Table of Contents Filesystems HOWTO
    Filesystems HOWTO Filesystems HOWTO Table of Contents Filesystems HOWTO..........................................................................................................................................1 Martin Hinner < [email protected]>, http://martin.hinner.info............................................................1 1. Introduction..........................................................................................................................................1 2. Volumes...............................................................................................................................................1 3. DOS FAT 12/16/32, VFAT.................................................................................................................2 4. High Performance FileSystem (HPFS)................................................................................................2 5. New Technology FileSystem (NTFS).................................................................................................2 6. Extended filesystems (Ext, Ext2, Ext3)...............................................................................................2 7. Macintosh Hierarchical Filesystem − HFS..........................................................................................3 8. ISO 9660 − CD−ROM filesystem.......................................................................................................3 9. Other filesystems.................................................................................................................................3
    [Show full text]
  • Hwloc-V1.10.1-Letter.Pdf
    Hardware Locality (hwloc) 1.10.1 Generated by Doxygen 1.8.8 Mon Jan 26 2015 10:38:04 Contents 1 Hardware Locality 1 1.1 Introduction ................................................. 1 1.2 Installation.................................................. 2 1.3 CLI Examples................................................ 3 1.4 Programming Interface ........................................... 8 1.4.1 Portability.............................................. 8 1.4.2 API Example ............................................12 1.5 Questions and Bugs.............................................15 1.6 History / Credits...............................................15 1.7 Further Reading...............................................15 2 Terms and Definitions 17 3 Command-Line Tools 21 3.1 lstopo and lstopo-no-graphics........................................21 3.2 hwloc-bind..................................................21 3.3 hwloc-calc..................................................21 3.4 hwloc-info..................................................22 3.5 hwloc-distrib.................................................22 3.6 hwloc-ps...................................................22 3.7 hwloc-gather-topology............................................22 3.8 hwloc-distances...............................................22 3.9 hwloc-annotate ...............................................22 3.10 hwloc-diff and hwloc-patch .........................................22 3.11 hwloc-compress-dir.............................................23 3.12 hwloc-assembler
    [Show full text]
  • 12. File-System Implementation
    12.12. FiFilele--SystemSystem ImpImpllemeemenntattatiionon SungyoungLee College of Engineering KyungHeeUniversity ContentsContents n File System Structure n File System Implementation n Directory Implementation n Allocation Methods n Free-Space Management n Efficiency and Performance n Recovery n Log-Structured File Systems n NFS Operating System 1 OverviewOverview n User’s view on file systems: ü How files are named? ü What operations are allowed on them? ü What the directory tree looks like? n Implementor’sview on file systems: ü How files and directories are stored? ü How disk space is managed? ü How to make everything work efficiently and reliably? Operating System 2 FileFile--SySysstemtem StrStruucturecture n File structure ü Logical storage unit ü Collection of related information n File system resides on secondary storage (disks) n File system organized into layers n File control block ü storage structure consisting of information about a file Operating System 3 LayeLayerreded FFililee SystemSystem Operating System 4 AA TypicalTypical FFileile ControlControl BlockBlock Operating System 5 FileFile--SySysstemtem ImImpplementationlementation n On-disk structure ü Boot control block § Boot block(UFS) or Boot sector(NTFS) ü Partition control block § Super block(UFS) or Master file table(NTFS) ü Directory structure ü File control block (FCB) § I-node(UFS) or In master file table(NTFS) n In-memory structure ü In-memory partition table ü In-memory directory structure ü System-wide open file table ü Per-process open file table Operating
    [Show full text]
  • File Systems Performance Analysis
    File Systems Performance Analysis Benchmarking project for the lecture Computer Performance Analysing And Benchmarking lectured by Prof. Thomas M. Stricker at Swiss Federal Institute of Technology Written by Stefan Rondinelli File Systems Performance Analysis Project CONTENTS 0 Introduction 2 1 The Environment 2 1.1 The Hardware 2 1.2 The Software 3 2 Performing the Benchmark 4 2.1 The Proceeding 4 2.2 The Output 5 3 Statistical Analysis of the Data 6 3.1 Computation of Effects 6 3.2 Confidence Intervals 7 3.3 Are the File Systems Significantly Different? 8 4 References 10 - 1 - File Systems Performance Analysis Project 0 Introduction Every operating system has its own file systems. For example Windows uses FAT16(File Allocation Table 16(bits)), FAT32(File Allocation Table 32) and NTFS(Windows NT File System), Linux uses Minix fs, Extended fs and ext2 and a Mac has its (discarded) MFS(Macintosh file system) and HFS(Hierarchical File System) file systems. Sometimes file systems of other operating systems are supported what for example is desired in a dual boot system (e.g. Linux and Windows). When using such a dual boot machine with Linux and Windows, the performance of a file system could be one of the considerations when choosing what file systems to use for the different partitions. In this project I am going to benchmark some file systems and finally to analyze the gathered data statistically as learned in the lecture. 1 The Environment 1.1 The Hardware I used the following hardware for the performance analysis: - CPU: AMD K6II 450Mhz (has a 64kB cache) - RAM: 64MB SDRAM - Hard disk 1: Western Digital Caviar 36400 (6 GB) - Hard disk 2: Western Digital Caviar 33200 (3 GB) - Disk controller: IDE for both hard disks To have the same conditions these components affecting the I/O speed must be the same ones for all the measurements of the performance of the different file systems otherwise the differences in the measured data would rather be due to unequal hardware then to the different implementation of a file system.
    [Show full text]
  • Alternate Data Streams in NTFS
    Alternate Data Streams in NTFS Author: Conrad Chung, 2BrightSparks Introduction 20 years ago, Microsoft developed the Windows NT operating system based on the popular NT platform. Since then, it has continued to develop newer operating systems like Windows 8 and Windows Server 2012 using the same platform. Despite the widespread use of Microsoft’s operating systems, Windows users may not be aware of a lesser known feature in the NTFS file system (New Technology File System) called Alternate Data Streams (ADS). This article aims to provide some essential information on ADS as well as its uses and drawbacks. What are Alternate Data Streams? Since the introduction of Windows NT 3.1, NTFS has been the preferred file system developed by Microsoft for its NT-based operating systems. NTFS was implemented to replace the FAT (File Access Table) file system used by older operating systems like Windows 9x. Alternate Data Streams within NTFS allow the embedding of metadata in files or folders without altering their original functionality or content. In NTFS, the main data stream refers to the standard content (if any) of the file or folder, and this is usually visible to the user, while alternate data streams are hidden. The Windows operating system does not provide the means for any Microsoft Windows Utilities to detect the presence of ADS, thus they are not visible to the vast majority of file management applications like Windows Explorer. Alternate streams do not have any size limits and several streams can be linked to a normal file. The contents of ADS is not limited to text data; essentially any file that is in binary format can be embedded as an alternate stream.
    [Show full text]