Handbook for Postgraduate Students in Physics and Astronomy
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
CONTENTS Group Membership, January 2002 2
CONTENTS Group Membership, January 2002 2 APPENDIX 1: Report on Activities 2000-2002 & Proposed Programme 2002-2006 4 1OPAL 4 2H1 7 3 ATLAS 11 4 BABAR 19 5DØ 24 6 e-Science 29 7 Geant4 32 8 Blue Sky and applied R&D 33 9 Computing 36 10 Activities in Support of Public Understanding of Science 38 11 Collaborations and contacts with Industry 41 12 Other Research Related Activities by Group Members 41 13 Staff Management and Implementation of Concordat 41 APPENDIX 2: Request for Funds 1. Support staff 43 2. Travel 55 3. Consumables 56 4. Equipment 58 APPENDIX 3: Publications 61 1 Group Membership, May 2002 Academic Staff Dr John Allison Senior Lecturer Professor Roger Barlow Professor Dr Ian Duerdoth Senior Lecturer Dr Mike Ibbotson Reader Dr George Lafferty Reader Dr Fred Loebinger Senior Lecturer Professor Robin Marshall Professor, Group Leader Dr Terry Wyatt Reader Dr A N Other (from Sept 2002) Lecturer Fellows Dr Brian Cox PPARC Advanced Fellow Dr Graham Wilson (leave of absence for 2 yrs) PPARC Advanced Fellow James Weatherall PPARC Fellow PPARC funded Research Associates∗ Dr Nick Malden Dr Joleen Pater Dr Michiel Sanders Dr Ben Waugh Dr Jenny Williams PPARC funded Responsive Research Associate Dr Liang Han PPARC funded e-Science Research Associates Steve Dallison core e-Science Sergey Dolgobrodov core e-Science Gareth Fairey EU/PPARC DataGrid Alessandra Forti GridPP Andrew McNab EU/PPARC DataGrid PPARC funded Support Staff∗ Phil Dunn (replacement) Technician Andrew Elvin Technician Dr Joe Foster Physicist Programmer Julian Freestone -
U DLCR Records of the Liquid Crystals and Advanced 1929-2015 Materials Research Group, University of Hull
Hull History Centre: Liquid Crystals & Advanced Materials Research Group, University of Hull U DLCR Records of the Liquid Crystals and Advanced 1929-2015 Materials Research Group, University of Hull Accession number: 2014/04(1-4); 2014/05 Historical Background: The Liquid Crystals Research Group at the University of Hull Chemistry Department The Beginnings - The 1930s-1940s The beginnings of the Liquid Crystals Research Group at the University of Hull are to be found in the 1930s with the research of Brynmor Jones (later Sir Brynmor Jones, Chancellor of the University of Hull) into liquid crystal materials. Having joined the University of Hull from Sheffield University's chemistry department, Jones began to establish a strong basis for research into this emerging area. George William Gray - The 1950s-1960s The mantle of liquid crystal research passed to George William Gray after he joined the Department of Chemistry in 1946 and completed his PhD thesis in 1953. Gray's first papers were published in collaboration with Jones but during the 1950s and 1960s it was his own interest and personal drive that kept research alive at a time when liquid crystals were less than fashionable and could attract little funding. In these decades the focus of Gray's research was the extension of earlier studies of the relationships between molecular structure and liquid crystal properties. This research centred on studies of alkoxy-aromatic carboxylic acids derived from benzene, biphenyl, naphthalene, fluorene, fluorenone and anthracene, and also studies -
LIQUID CRYSTAL NEWSLIQUID NEWS $(%(&' "!!#$(%(&'"!!# GW Gray Medal for 2006 Professor Heino Finkelmann
LIQUID CRYSTAL NEWSLIQUID NEWS $(%(&' "!!#$(%(&'"!!# GW Gray Medal for 2006 Professor Heino Finkelmann as originally intended in Krakow. Since these days, we have met very frequently, for example, when I was privileged to lecture in Professor Finkelmann’s Institute and at many other scientific meetings not least of which was the Twelfth International Liquid Crystal Conference held in 1988 in Freiburg itself and chaired and organised by Professor Finkelmann. My wife and I well remember enjoying a glass of wine with Heino and his wife and two boys at their home after the closing ceremonies were complete and people like conference chairmen are at last allowed to relax. I have put the material in the above paragraph early in this article about Heino Finkelmann, because I wanted to stress that his very great contributions to the subject of liquid crystals have been not only in the area of scientific research, but also, by his readiness to travel far and wide to Heino Finkelmann was born in Gronau in Lower give lectures, by spreading the word on the subject, by Saxony in 1945. After school, his studies at the Scientific serving on the editorial boards of relevant journals, by Technical Academy at Isny were in the field of chemical organising meetings and conferences such as the 12th engineering and on the way to qualifying in 1969, he spent ILCC, by serving as he has twice done on the Board of time with Unilever Research and with British Petroleum in Directors of the International Liquid Crystal Society and by Hamburg. He then studied Chemistry at the Technical acting as Chairman of the German Liquid Crystal Society University of Berlin, and it was here that he first began as he did for many years. -
NEWSLETTER Issue No 14 – 2017
NEWSLETTER Issue No 14 – 2017 ue In this Iss p. 2 Focus „Soft Matter & Health“: Of Switchable Contact Lenses, Protein Interactions, and Cell-to-cell Communication p. 8 Research Highlights 2016 p. 10 Events p. 14 Personalia/News FROM NOVEL SOFT Editorial MATERIALS TO SWITCHABLE Europe can look back at over 2000 years of glo- rious, but often tumultuous history. In particular, CONTACT LENSES the last century should have shown us very clearly that working together is much more fruitful and beneficial to all Europeans than working against each other. Unfortunately, in the last few years, this development seems to have come to a halt, with nationalism on the rise again in many countries. Science and scientific knowledge are under siege by “alternative facts”. We, as European scientists, are in a unique position to fight back. Science has long been an international endeavour, with scientists from various countries and continents working together in friendly competition for new insights and novel technological developments. Let us continue to do so, and to further strengthen the links which have been formed over decades. SoftComp is an ideal platform to foster this collaboration! Switchable liquid crystal contact lens Angela Wenzik & Gerhard Gompper with graphene electrodes fabricated by the Leeds team. Demonstration of 2.5 Dioptre change in optical focus from the contact lens. by Cliff Jones, Leeds University, UK, [email protected]; also in the picture: his colleagues Mamatha Nagaraj (left), and Helen Gleeson. Together they make up the new Leeds Liquid Crystals group. 3 axis parallel to the field onto it, and methods for automatically trig- direction so that the material ap- gering operation by detecting gaze direc- The use pears to be isotropic in both ON and OFF tion or other eye changes. -
Unusual Particle Motions in the Liquid Crystal Phases
Unusual Particle Motions in the Liquid Crystal Phases A thesis submitted to the University of Manchester for the degree for PhD in the Faculty of Engineering and Physical Sciences 2014 JIYOUNG OH School of Physics and Astronomy/Condensed Matter, Atomic and Biological Physics Abstract The motions of particles dispersed in liquid crystals can be influenced by the application of an electric field, the effect depending on the field frequency and field amplitude. Sandwich cells under the application of electric field are widely used as the tool in order to investigate the fundamental research relating to electro-optic display technology. Therefore, the aim of this experimental work is to find and investigate novel motion of the particles dispersed in the liquid crystal phases, held within a sandwich cell. For the liquid crystal–particle systems in the sandwich cells in this thesis, the particle shapes, temperature and cell geometry are all shown to have an influence on the regime of the particle’s motions, with different phenomena observed using three different phases of liquid crystals. The experiments are designed to find and investigate the novel motion of the micron sized silica particles in the liquid crystal phases. In the chiral nematic phase, spherical particles are shown to exhibit linear motion, which is related to the electrophoretic mobility. Such spherical particles are also observed to show circular motion which is found to have a field dependency that can be related to Quincke rotation. A maximum frequency for motion occurs which is found to possibly be related to the effect of the ion diffusion in the liquid crystal- particle composite system. -
Liquid Crystals
crystals Editorial Liquid Crystals Charles Rosenblatt Ohio Eminent Scholar and Professor of Physics, Department of Physics, Case Western Reserve University, Cleveland, OH 44106-7079, USA; [email protected] Received: 15 January 2020; Accepted: 17 January 2020; Published: 18 January 2020 Liquid crystals were discovered by Friedrich Reinitzer in 1888 when he observed colors in cholesterol derivatives that are characteristic of highly birefringent materials [1]. Materials that today are classified as “liquid crystals” are typically composed of organic molecules and have phase structures that are between liquid and crystalline [2]. In particular, the simplest liquid crystal phase, the “nematic”, is composed of highly prolate or oblate organic molecules (or other anisometric structures) that possess long-range orientational order, but no long-range positional order. At lower temperatures, one often finds various “smectic” phases in which the molecules arrange themselves in layers and exhibit a quasi-long-range translational order in one dimension, but are positionally liquid-like within the layer. For much of the next eight decades there was little activity beyond the characterization of their viscoelastic properties. However, the field took off in the 1960s, particularly after the first successful thermal model for the isotropic-nematic phase transition [3,4], followed by the invention of the “twisted nematic” optical display in the early 1970s [5,6]. Much of the work during the subsequent two decades involved understanding the transitions -
Dr. David Michael South ATLAS, H1, Lhec and DPHEP Collaborations October 2019
Dr. David Michael South ATLAS, H1, LHeC and DPHEP Collaborations October 2019 Date of Birth: 18.01.1977 [email protected] Languages: English, German www.desy.de/∼southd Employment • Staff Scientist, DESY-Hamburg since Feb 2013 • Research Associate, DESY-Hamburg Jul 2010 { Jan 2013 • Research Associate, Technische Universit¨atDortmund Jan 2007 { Jun 2010 • Research Fellow, DESY-Hamburg May 2003 { Dec 2006 Professional Experience • Current positions { ATLAS Distributed Computing Coordinator Oct 2019 { Chair of National Analysis Facility User Committee Feb 2014 { DESY-ATLAS Group Computing Coordinator Feb 2013 { DESY-ATLAS International Computing Board Representative Oct 2012 { H1 Physics Board Member Jul 2012 • Former positions and activities { ATLAS Monte Carlo Production Coordinator 2017 { 2019 { Chair of ATLAS Panel on Analysis Preservation 2015 { 2017 { ATLAS Data Reprocessing Coordinator 2014 { 2017 { ATLAS Conditions Database Coordinator 2011 { 2014 { DESY Data Preservation Group Leader 2010 { 2017 { DPHEP Working Group Convener on Data Preservation Models 2009 { 2017 { H1 Computing and Software Coordinator 2008 { 2012 { H1 Analysis Software Project Convener 2007 { 2009 { H1 Rare and Exotics Physics Working Group Convener 2006 { 2012 { H1 Run Coordinator 2005 { 2007 { Supervision of DESY Summer Students 2005 { 2006 { On call for the HERA Transverse Polarimeter 2004 { 2005 { On call for the H1 LAr Calorimeter, Forward Tracker and Forward Muon Detector 2003 { 2007 { Shift duty on the H1 Experiment 2000 { 2007 • Conference and workshop -
Martinsson2020 Redacted.Pdf (11.07Mb)
This thesis has been submitted in fulfilment of the requirements for a postgraduate degree (e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following terms and conditions of use: This work is protected by copyright and other intellectual property rights, which are retained by the thesis author, unless otherwise stated. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author. The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author. When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given. Accelerated Sampling Schemes for High Dimensional Systems Anton Martinsson Doctor of Philosophy University of Edinburgh February 2020 Till Marie, Niklas och Marianna. 4 Lay Summary We construct and analyse accelerated sampling schemes for high dimensional systems. The development of these methods is fundamental for effective computational study of a large class of problems in statistics, statistical physics, chemistry and engineering. Models in these different areas associate a probabilistic likelihood to the values of the variables of the system. For example, a protein molecule may fold into one of several natural shapes which has a lower energy than others. The aim of accelerated schemes is to enhance the exploration of the most likely states that will be found under certain conditions. We focus on the design of methods based on the discretization of stochastic differential equations which result in sequential iterative procedures that generate state sequences when implemented on a computer. -
Newsletter Softmatterworld
SoftMatterWorld Newsletter June 2010, Issue 18 Dear Soft Matter Colleagues, This month’s Noticeboard Bulletin has over 30 positions ranging in location from Am- sterdam to Ohio to Greece! Many of the openings are from groups in our Global Research Network. Research Group of the Month: Nonlinear and Liquid Crystal Physics Group at Manchester University, UK This month we are focusing on some of the ex- citing research at the University of Manchester. The Nonlinear and Liquid Crystals Group is led by 3 primary academic staff members; Prof. Tom Mullin, Prof. Helen Gleeson and Dr. Ingo Dierking. Their research is concentrated on experimental and theoretical studies of the physics of fluid flows and liquid crystals, i.e. the properties of isotropic and anisotropic fluids. The length scales range from the microscopic, where the focus is on self-assembly and order, to macroscopic nonlinear effects such as chaos, turbulence and pattern formation. Experimental work is closely linked with theory through the Manchester Centre for Nonlinear Dynamics, which provides a vibrant research environment. Some of the current topics of research include: • Pattern formation & stress transmission in granular materials Latest Research• Complexity and clustering in particulate flows • Electro-optic effects in liquid crystals • Functional ordering in cell membranes • Structures and order in chiral liquid crystals • Polymer and nanotube liquid crystal composites The Group is also home to the world’s largest constant mass flux pipe facility used for particle image velocimetry. The laboratory includes facilities for fabricating specialist devices in addition to extensive equipment for structural studies of liquid crystal systems. There are currently openings for postgraduate projects. -
Programme Monday 15Th April 2019
Programme Monday 15th April 2019 DAY 1 Leeds Liquid Crystal Symposium 08:15 Registration 09:00 Welcome: Cliff Jones and Mariam Hussain 09:10 Speaker 1: Gordon Tiddy, University of Manchester Lyotropic Liquid Crystals: Surfactants. 09:50 Speaker 2: Arwen Tyler, University of Leeds Inverse Lyotropic Liquid Crystalline Bicontinuous Cubic Phases 10:20 Break & Refreshments 10:40 Speaker 3: John Seddon, Imperial College, London Inverse Micellar Lyotropic Liquid-Crystalline Ordered Phases of Lipids and Surfactants 11:10 Speaker 4: Mark Wilson, Durham University Self-assembled nanostructures and phases formed from conventional and non-conventional amphiphiles: insights from molecular simulations 11:40 Speaker 5: John Lydon, University of Leeds The sickle Cell – a chiral tactoid with a skin 12:00 Closing Comments Attendees at L3C Symposium are invited to join delegates from the BLCS 2019 conference for lunch, providing an excellent networking opportunity. Programme Monday 15th April 2019 British Liquid Crystal Society Annual Conference 11:30 Registration and Lunch 13:40 Welcome: Mamatha Nagaraj and Cliff Jones Session 1 Colloids I Professor Cliff Jones 13:50 Plenary 1: Ivan Smalyukh, University of Colorado, USA: Nematic colloidal crystals and micro-motors powered by light 14:30 Oral 1: Dwaipayan Chakrabati, University of Birmingham Enlightening Colloidal Crystals for Photonics 14:50 Oral 2: Nikita Solodkov, University of Leeds Self-assembly of fractal liquid crystal colloids 15:10 Oral 3: Huanan Yu, University of Hull Novel Liquid Crystal Behaviour -
HESS Opens up the Gamma-Ray Sky
INTERNATIONAL JOURNAL OF HIGH-ENERGY PHYSICS CERN COURIER HESS opens up the gamma-ray sky NUCLEAR PHYSICS COMPUTING NEWS VIEWPOINT SOLDEand IGISOL cast new Logbook brings note-taking Simon Singh on how to ight on how carbon forms p6 into the 21st century p 18 amaze the public p58 CABURN 20% off all Vacuum Science Limited feedthrough products* To mark the new year and celebrate our expansion and relocation, Caburn is pleased to offer customers 20% off all feedthrough products ordered before the end of March, 2005. Offer applies to all standard feedthrough products, including: • Multipin feedthroughs • Subminiature C & D • Coaxial feedthroughs • Fibre optics • Thermocouples • Power feedthroughs • Breaks and envelopes • Connectors and cables *Offer applicable to orders placed by Thursdsay, March 31,2005. Visit our comprehensive website: www. c abu i* n M a Ju k 1 see section 6 of our online catalog for discounted products WMm ft I UNITED KINGDOM GERMANY I FRANCE | ITALY Yfefil w> Caburn Vacuum Science Ltd Caburn Vacuum Science GmbH Caburn Vacuum Science Sari Caburn Vacuum Science SrL ^X^J UKAS 1st Floor, Martlet Heights, Am Zirkus 3a 38 Place des Pavilions Corso Lombardia, 153/15 mlmkMammi The Martlets, Burgess Hill, D-10117 Berlin 69007 LYON 10149 TORINO ISO 9001 * 2000 West Sussex RH15 9NJ UK Tel: +49 (0)30-787 743 0 Tel: +33 (0)437 65 17 50 Tel: +39 011 4530791 F" M 5 1*3 2 7 Tel: +44 <°>1444 873900 Fax: +49 I0*30"787 743 50 Fax: +33 (°'437 65 17 55 Fax: +39 011 4550298 Fax: +44(0)1444 258577 [email protected] [email protected] [email protected] [email protected] CONTENTS Covering current developments in high- energy physics and related fields worldwide CERN Courier is distributed to member-state governments, institutes and laboratories affiliated with CERN, and to their personnel. -
For Your Diary 2014
NEWSLETTER No 18 February 2014 Welcome notes from the WIPG Chair Hello and welcome to the latest edition of the Women in Physics Group newsletter. After several years of working as secretary to the group committee, I was honoured to be voted in as chair at the last AGM. I wish Dr Dawn Leslie, the previous chair, all the best in her future beyond the role – I know she has plenty at Brunel University to keep her busy! I am ably assisted by Miss Karla Herpoldt (Secretary) and Dr Joanne Cole (Treasurer), as well as the many other able and enthusiastic members of the group. A warm welcome is also due to Prof Eithne McCabe (Trinity College Dublin) who recently joined the committee, and warm congratulations to Dr Josephine Coltman who whose attendance at group meetings has been interrupted - somewhat wonderfully - by the arrival of her baby girl. It is great that the group has so much positive news to report, which I hope you will be encouraged in reading. Good news can sometimes be in scarce supply. The recent House of Commons Science and Technology Select Committee report on ‘Women in Scientific Careers’ followed on from the Business, Innovation and Skills Committee’s report on ‘Women in the Workplace’ last year, which highlighted the continuing under-representation of women in careers related to science, technology, engineering and maths. The ‘Women in Scientific Careers’ report reiterated that there is still much to be done in undermining cultural perceptions that science is not ‘for girls’ and supporting women who pursue science at every stage of their careers.