Optimization Toolbox User's Guide
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Numerical Methods in MATLAB
Numerical methods in MATLAB Mariusz Janiak p. 331 C-3, 71 320 26 44 c 2015 Mariusz Janiak All Rights Reserved Contents 1 Introduction 2 Ordinary Differential Equations 3 Optimization Introduction Using numeric approximations to solve continuous problems Numerical analysis is a branch of mathematics that solves continuous problems using numeric approximation. It involves designing methods that give approximate but accurate numeric solutions, which is useful in cases where the exact solution is impossible or prohibitively expensive to calculate. Numerical analysis also involves characterizing the convergence, accuracy, stability, and computational complexity of these methods.a aThe MathWorks, Inc. Introduction Numerical methods in Matlab Interpolation, extrapolation, and regression Differentiation and integration Linear systems of equations Eigenvalues and singular values Ordinary differential equations (ODEs) Partial differential equations (PDEs) Optimization ... Introduction Numerical Integration and Differential Equations Ordinary Differential Equations – ordinary differential equation initial value problem solvers Boundary Value Problems – boundary value problem solvers for ordinary differential equations Delay Differential Equations – delay differential equation initial value problem solvers Partial Differential Equations – 1-D Parabolic-elliptic PDEs, initial-boundary value problem solver Numerical Integration and Differentiation – quadratures, double and triple integrals, and multidimensional derivatives Ordinary Differential Equations An ordinary differential equation (ODE) contains one or more derivatives of a dependent variable y with respect to a single independent variable t, usually referred to as time. The notation used here for representing derivatives of y with respect to t is y 0 for a first derivative, y 00 for a second derivative, and so on. The order of the ODE is equal to the highest-order derivative of y that appears in the equation. -
Optimization Toolbox User's Guide
Optimization Toolbox For Use with MATLAB® User’s Guide Version 2 How to Contact The MathWorks: www.mathworks.com Web comp.soft-sys.matlab Newsgroup [email protected] Technical support [email protected] Product enhancement suggestions [email protected] Bug reports [email protected] Documentation error reports [email protected] Order status, license renewals, passcodes [email protected] Sales, pricing, and general information 508-647-7000 Phone 508-647-7001 Fax The MathWorks, Inc. Mail 3 Apple Hill Drive Natick, MA 01760-2098 For contact information about worldwide offices, see the MathWorks Web site. Optimization Toolbox User’s Guide COPYRIGHT 1990 - 2003 by The MathWorks, Inc. The software described in this document is furnished under a license agreement. The software may be used or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro- duced in any form without prior written consent from The MathWorks, Inc. FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by or for the federal government of the United States. By accepting delivery of the Program, the government hereby agrees that this software qualifies as "commercial" computer software within the meaning of FAR Part 12.212, DFARS Part 227.7202-1, DFARS Part 227.7202-3, DFARS Part 252.227-7013, and DFARS Part 252.227-7014. The terms and conditions of The MathWorks, Inc. Software License Agreement shall pertain to the government’s use and disclosure of the Program and Documentation, and shall supersede any conflicting contractual terms or conditions. If this license fails to meet the government’s minimum needs or is inconsistent in any respect with federal procurement law, the government agrees to return the Program and Documentation, unused, to MathWorks. -
Optimization Toolbox
Optimization Toolbox™ 4 User’s Guide How to Contact The MathWorks www.mathworks.com Web comp.soft-sys.matlab Newsgroup www.mathworks.com/contact_TS.html Technical Support [email protected] Product enhancement suggestions [email protected] Bug reports [email protected] Documentation error reports [email protected] Order status, license renewals, passcodes [email protected] Sales, pricing, and general information 508-647-7000 (Phone) 508-647-7001 (Fax) The MathWorks, Inc. 3 Apple Hill Drive Natick, MA 01760-2098 For contact information about worldwide offices, see the MathWorks Web site. Optimization Toolbox™ User’s Guide © COPYRIGHT 1990–2008 by The MathWorks, Inc. The software described in this document is furnished under a license agreement. The software may be used or copied only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form without prior written consent from The MathWorks, Inc. FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through the federal government of the United States. By accepting delivery of the Program or Documentation, the government hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and Documentation by the federal government (or other entity acquiring for or through the federal government) and shall supersede any conflicting contractual terms or conditions. -
Overview of Optimization Software
Stanford University, Management Science & Engineering (and ICME) MS&E 318 (CME 338) Large-Scale Numerical Optimization Instructor: Michael Saunders Spring 2018 Notes 2: Overview of Optimization Software 1 Optimization problems We study optimization problems involving linear and nonlinear constraints: NP minimize φ(x) n x∈R 0 x 1 subject to ` ≤ @ Ax A ≤ u, c(x) where φ(x) is a linear or nonlinear objective function, A is a sparse matrix, c(x) is a vector of nonlinear constraint functions ci(x), and ` and u are vectors of lower and upper bounds. We assume the functions φ(x) and ci(x) are smooth: they are continuous and have continuous first derivatives (gradients). Sometimes gradients are not available (or too expensive) and we use finite difference approximations. Sometimes we need second derivatives. We study algorithms that find a local optimum for problem NP. Some examples follow. If there are many local optima, the starting point is important. „ x « LP Linear Programming min cTx subject to ` ≤ ≤ u Ax MINOS, SNOPT, SQOPT LSSOL, QPOPT, NPSOL (dense) CPLEX, Gurobi, LOQO, HOPDM, MOSEK, XPRESS CLP, lp solve, SoPlex (open source solvers [7, 34, 54]) „ x « QP Quadratic Programming min cTx + 1 xTHx subject to ` ≤ ≤ u 2 Ax MINOS, SQOPT, SNOPT, QPBLUR LSSOL (H = BTB, least squares), QPOPT (H indefinite) CLP, CPLEX, Gurobi, LANCELOT, LOQO, MOSEK BC Bound Constraints min φ(x) subject to ` ≤ x ≤ u MINOS, SNOPT LANCELOT, L-BFGS-B „ x « LC Linear Constraints min φ(x) subject to ` ≤ ≤ u Ax MINOS, SNOPT, NPSOL 0 x 1 NC Nonlinear Constraints min φ(x) subject to ` ≤ @ Ax A ≤ u MINOS, SNOPT, NPSOL c(x) CONOPT, LANCELOT Filter, KNITRO, LOQO (second derivatives) IPOPT (open source solver [30]) Algorithms for finding local optima are used to construct algorithms for more complex optimization problems: stochastic, nonsmooth, global, mixed integer. -
Optimization Toolbox for Use with MATLAB®
Optimization Toolbox For Use with MATLAB® User’s Guide Version 3 How to Contact The MathWorks: www.mathworks.com Web comp.soft-sys.matlab Newsgroup [email protected] Technical support [email protected] Product enhancement suggestions [email protected] Bug reports [email protected] Documentation error reports [email protected] Order status, license renewals, passcodes [email protected] Sales, pricing, and general information 508-647-7000 Phone 508-647-7001 Fax The MathWorks, Inc. Mail 3 Apple Hill Drive Natick, MA 01760-2098 For contact information about worldwide offices, see the MathWorks Web site. Optimization Toolbox User’s Guide © COPYRIGHT 1990 - 2004 by The MathWorks, Inc. The software described in this document is furnished under a license agreement. The software may be used or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro- duced in any form without prior written consent from The MathWorks, Inc. FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through the federal government of the United States. By accepting delivery of the Program or Documentation, the government hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and Documentation by the federal government (or other entity acquiring for or through the federal government) and shall supersede any conflicting contractual terms or conditions. -
Nonlinear Constrained Optimization: Methods and Software
ARGONNE NATIONAL LABORATORY 9700 South Cass Avenue Argonne, Illinois 60439 Nonlinear Constrained Optimization: Methods and Software Sven Leyffer and Ashutosh Mahajan Mathematics and Computer Science Division Preprint ANL/MCS-P1729-0310 March 17, 2010 This work was supported by the Office of Advanced Scientific Computing Research, Office of Science, U.S. Department of Energy, under Contract DE-AC02-06CH11357. Contents 1 Background and Introduction1 2 Convergence Test and Termination Conditions2 3 Local Model: Improving a Solution Estimate3 3.1 Sequential Linear and Quadratic Programming......................3 3.2 Interior-Point Methods....................................5 4 Globalization Strategy: Convergence from Remote Starting Points7 4.1 Augmented Lagrangian Methods..............................7 4.2 Penalty and Merit Function Methods............................8 4.3 Filter and Funnel Methods..................................9 4.4 Maratos Effect and Loss of Fast Convergence....................... 10 5 Globalization Mechanisms 11 5.1 Line-Search Methods..................................... 11 5.2 Trust-Region Methods.................................... 11 6 Nonlinear Optimization Software: Summary 12 7 Interior-Point Solvers 13 7.1 CVXOPT............................................ 13 7.2 IPOPT.............................................. 13 7.3 KNITRO............................................ 15 7.4 LOQO............................................. 15 8 Sequential Linear/Quadratic Solvers 16 8.1 CONOPT........................................... -
MATLAB's Optimization Toolbox Algorithms
Appendix A MATLAB’s Optimization Toolbox Algorithms Abstract MATLAB’s Optimization Toolbox (version 7:2) includes a family of algorithms for solving optimization problems. The toolbox provides functions for solving linear programming, mixed-integer linear programming, quadratic program- ming, nonlinear programming, and nonlinear least squares problems. This chapter presents the available functions of this toolbox for solving LPs. A computational study is performed. The aim of the computational study is to compare the efficiency of MATLAB’s Optimization Toolbox solvers. A.1 Chapter Objectives • Present the linear programming algorithms of MATLAB’s Optimization Tool- box. • Understand how to use the linear programming solver of MATLAB’s Optimiza- tion Toolbox. • Present all different ways to solve linear programming problems using MAT- LAB. • Compare the computational performance of the linear programming algorithms of MATLAB’s Optimization Toolbox. A.2 Introduction MATLAB is a matrix language intended primarily for numerical computing. MATLAB is especially designed for matrix computations like solving systems of linear equations or factoring matrices. Users that are not familiar with MATLAB are referred to [3, 7]. Experienced MATLAB users that want to further optimize their codes are referred to [1]. MATLAB’s Optimization Toolbox includes a family of algorithms for solving optimization problems. The toolbox provides functions for solving linear pro- gramming, mixed-integer linear programming, quadratic programming, nonlinear programming, and nonlinear least squares problems. MATLAB’s Optimization Toolbox includes four categories of solvers [9]: © Springer International Publishing AG 2017 565 N. Ploskas, N. Samaras, Linear Programming Using MATLAB®, Springer Optimization and Its Applications 127, DOI 10.1007/978-3-319-65919-0 566 Appendix A MATLAB’s Optimization Toolbox Algorithms • Minimizers: solvers that attempt to find a local minimum of the objective function.