Arkansas Tech University Department of Nursing
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Selective Mtorc2 Inhibitor Therapeutically Blocks Breast Cancer Cell Growth and Survival
Author Manuscript Published OnlineFirst on January 22, 2018; DOI: 10.1158/0008-5472.CAN-17-2388 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Selective mTORC2 inhibitor therapeutically blocks breast cancer cell growth and survival Thomas A. Werfel1, 3, Shan Wang2, Meredith A. Jackson1, Taylor E. Kavanaugh1, Meghan Morrison Joly3, Linus H. Lee1, Donna J. Hicks3, Violeta Sanchez4, Paula Gonzalez Ericsson4, Kameron V. Kilchrist1, Somtochukwu C. Dimobi1, Samantha M. Sarett1, Dana Brantley-Sieders2, Rebecca S. Cook1,3,4* and Craig L. Duvall1* 1Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232 USA 2Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232.USA 3Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232 USA 4Breast Cancer Research Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232 USA Running Title: A selective mTORC2 inhibitor blocks breast cancer growth Key Words: Breast Cancer, mTOR, Rictor, RNA interference, Nanomedicine *To whom correspondence should be addressed: Craig L. Duvall, PhD Vanderbilt University School of Engineering Department of Biomedical Engineering Nashville, TN 37232 Phone: (615) 322-3598 Fax: (615) 343-7919 Email: [email protected] Rebecca S. Cook, PhD Vanderbilt University Medical Center Department of Cancer Biology Nashville, TN 37232 Phone: (615) 936-3813 Fax: (615) 936-3811 Email: [email protected] Funding. This work was supported by Specialized Program of Research Excellence (SPORE) grant NIH P50 CA098131 (VICC), Cancer Center Support grant NIH P30 CA68485 (VICC), NIH F31 CA195989-01 (MMW), NIH R01 EB019409, DOD CDMRP OR130302, NSF GFRP 1445197, and CTSA UL1TR000445 from the National Center for Advancing Translational Sciences. -
Angiotensin-Converting Enzyme (ACE) Inhibitors Single Entity Agents
Therapeutic Class Overview Angiotensin-Converting Enzyme (ACE) Inhibitors Single Entity Agents Therapeutic Class Overview/Summary: The renin-angiotensin-aldosterone system (RAAS) is the most important component in the homeostatic regulation of blood pressure.1,2 Excessive activity of the RAAS may lead to hypertension and disorders of fluid and electrolyte imbalance.3 Renin catalyzes the conversion of angiotensinogen to angiotensin I. Angiotensin I is then cleaved to angiotensin II by angiotensin- converting enzyme (ACE). Angiotensin II may also be generated through other pathways (angiotensin I convertase).1 Angiotensin II can increase blood pressure by direct vasoconstriction and through actions on the brain and autonomic nervous system.1,3 In addition, angiotensin II stimulates aldosterone synthesis from the adrenal cortex, leading to sodium and water reabsorption. Angiotensin II exerts other detrimental cardiovascular effects including ventricular hypertrophy, remodeling and myocyte apoptosis.1,2 The ACE inhibitors block the conversion of angiotensin I to angiotensin II, and also inhibit the breakdown of bradykinin, a potent vasodilator.4 Evidence-based guidelines recognize the important role that ACE inhibitors play in the treatment of hypertension and other cardiovascular and renal diseases. With the exception of Epaned® (enalapril solution) and Qbrelis® (lisinopril solution), all of the ACE inhibitors are available generically. Table 1. Current Medications Available in Therapeutic Class5-19 Generic Food and Drug Administration -
Introduction to Hospital and Health-System Pharmacy Practice 59 Tients with a Specific Disease State Or for Activities Related to Self Governance Diagnosis
Part II: Managing Medication Use CHAPTER 4 Medication Management Kathy A. Chase ■■ ■■■ Key Terms and Definitions Learning Objectives ■■ Closed formulary: A list of medica- After completing this chapter, readers tions (formulary) which limits access should be able to: of a practitioner to some medications. 1. Describe the purpose of a formulary A closed formulary may limit drugs to system in managing medication use in specific physicians, patient care areas, or institutions. disease states via formulary restrictions. 2. Discuss the organization and role of the ■■ Drug formulary: A formulary is a pharmacy and therapeutics committee. continually updated list of medications 3. Explain how formulary management and related information, representing works. the clinical judgment of pharmacists, 4. List the principles of a sound formulary physicians, and other experts in the system. diagnosis and/or treatment of disease 5. Define key terms in formulary manage- and promotion of health. ment. ■■ Drug monograph: A written, unbi- ased evaluation of a specific medica- tion. This document includes the drug name, therapeutic class, pharmacology, indications for use, summary of clinical trials, pharmacokinetics/dynamics, ad- verse effects, drug interactions, dosage regimens, and cost. ■■ Drug therapy guidelines: A document describing the indications, dosage regi- mens, duration of therapy, mode(s) of administration, monitoring parameters and special considerations for use of a specific medication or medication class. ■■ Drug use evaluation (DUE): A process used to assess the appropriate- ness of drug therapy by engaging in the evaluation of data on drug use in a given health care environment against predetermined criteria and standards. ◆■ Diagnosis-related DUE: A drug use evaluation completed on pa- INTRODUCTION TO HOSPITAL AND HEALTH-SYSTEM PHARMACY PRACTICE 59 tients with a specific disease state or for activities related to self governance diagnosis. -
Utilization and Program Costs of Statins for Wisconsin Medicaid
To: Prescribing Physicians, Pharmacies From: Wisconsin Medicaid, Division of Health Care Financing January 2004 Utilization and Program Costs of Statins for Wisconsin Medicaid PRIOR AUTHORIZATION GUIDELINES (atorvastatin), Zocor (simvastatin), Pravachol (pravastatin), Crestor (rosuvastatin), Lescol (fluvastatin), and Lescol XL In order to encourage the use of generic lovastatin, the Wis- (fluvastatin XL). Products that contain an HMG-CoA reductase consin Medicaid program began requiring prior authorization inhibitor combined with another ingredient (e.g. Advicor) were for brand name HMG-CoA reductase inhibitors on April 15, not included in this analysis. 2003. Prior authorization was made available through the STAT-PA system. Only recipients new to statin drugs are re- The generic form of lovastatin is significantly less expen- quired to try lovastatin first. The criteria for determining prior sive to the Medicaid program than brand name products. authorization includes: Average cost to the Wisconsin Medicaid Program for generic 1 · Any recipient currently on an effective brand name statin lovastatin 40 mg is $1.20 per tablet and for a brand name will be granted PA to continue on that statin drug. HMG-CoA reductase inhibitors (including the brand name · Any recipient who requires >35% reduction in low-density forms of lovastatin) range from $1.65 to $4.18 per equipotent dosage2 (table 1). lipoprotein (LDL) cholesterol will be granted PA to start on the brand name statin drugs. Table I · Any recipient who has impaired renal function will be Cost Per Tablet for Wisconsin Medicaid granted PA to start on the brand name statin drugs. · Any recipient who is at high risk for drug interactions will be granted PA to start on the brand name statin drugs. -
S1 Table. List of Medications Analyzed in Present Study Drug
S1 Table. List of medications analyzed in present study Drug class Drugs Propofol, ketamine, etomidate, Barbiturate (1) (thiopental) Benzodiazepines (28) (midazolam, lorazepam, clonazepam, diazepam, chlordiazepoxide, oxazepam, potassium Sedatives clorazepate, bromazepam, clobazam, alprazolam, pinazepam, (32 drugs) nordazepam, fludiazepam, ethyl loflazepate, etizolam, clotiazepam, tofisopam, flurazepam, flunitrazepam, estazolam, triazolam, lormetazepam, temazepam, brotizolam, quazepam, loprazolam, zopiclone, zolpidem) Fentanyl, alfentanil, sufentanil, remifentanil, morphine, Opioid analgesics hydromorphone, nicomorphine, oxycodone, tramadol, (10 drugs) pethidine Acetaminophen, Non-steroidal anti-inflammatory drugs (36) (celecoxib, polmacoxib, etoricoxib, nimesulide, aceclofenac, acemetacin, amfenac, cinnoxicam, dexibuprofen, diclofenac, emorfazone, Non-opioid analgesics etodolac, fenoprofen, flufenamic acid, flurbiprofen, ibuprofen, (44 drugs) ketoprofen, ketorolac, lornoxicam, loxoprofen, mefenamiate, meloxicam, nabumetone, naproxen, oxaprozin, piroxicam, pranoprofen, proglumetacin, sulindac, talniflumate, tenoxicam, tiaprofenic acid, zaltoprofen, morniflumate, pelubiprofen, indomethacin), Anticonvulsants (7) (gabapentin, pregabalin, lamotrigine, levetiracetam, carbamazepine, valproic acid, lacosamide) Vecuronium, rocuronium bromide, cisatracurium, atracurium, Neuromuscular hexafluronium, pipecuronium bromide, doxacurium chloride, blocking agents fazadinium bromide, mivacurium chloride, (12 drugs) pancuronium, gallamine, succinylcholine -
Punjab Technical University/Msc. Clinical Research
Punjab Technical University/MSc. Clinical Research Scheme and Syllabus First Semester Teaching Load Course Marks Distribution Exam Course Title Allocation Credit Code (hr.) (hr.) L T P Internal External Total Pharmacology- C R- 101 3 1 - 40 60 100 3 4 101 Clinical CR - 102 3 1 - 40 60 100 3 4 Research-102 CR - 103 Medicine - 103 2 2 - 40 60 100 3 4 CR - 104 Biostatistics -104 2 2 - 40 60 100 3 4 Practical Lab (Part I-IT & Part- CR-105 - - 8 40 60 100 3 4 II Communication and management) 10 06 8 200 300 500 -- 20 Second Semester Teaching Load Course Marks Distribution Exam Course Title Allocation Credit Code (hr.) (hr.) L T P Internal External Total C R- 201 Pharmacology- 3 1 - 40 60 100 3 4 201 CR - 202 Clinical Research- 3 1 - 40 60 100 3 4 202 CR - 203 Medicine - 203 2 2 - 40 60 100 3 4 CR - 204 Biostatistics -204 2 2 - 40 60 100 3 4 CR-205 Practical Lab - - 8 40 60 100 3 4 (Part I-IT & Part- II Communication and management) 10 06 8 200 300 500 -- 20 Page 1 of 27 Punjab Technical University/MSc. Clinical Research Third Semester Teaching Load Exa Course Marks Distribution Course Title Allocation (hr.) m Credit Code L T P Internal External Total (hr.) CR- Pharmacology- 301 3 1 - 40 60 100 3 4 301 CR- Clinical Research-I - 3 1 - 40 60 100 3 4 302 302 CR- Clinical Research-II- 3 1 - 40 60 100 3 4 303 303 CR- Medicine -304 3 1 - 40 60 100 3 4 304 CR- Practical Lab - - 8 40 60 100 3 4 305 (Part I-IT & Part-II Communication and Management) Total 12 4 8 200 300 500 - 20 Fourth Semester Marks Distribution Course Title Dissertation Viva-Voce Total Credits Evaluation Dissertation 100 200 300 12 The thesis/project report shall be presented by the candidate at the end of record academic year. -
Angiotensin-Converting Enzyme (ACE) Inhibitors
Angiotensin-Converting Enzyme (ACE) Inhibitors Summary Blood pressure reduction is similar for the ACE inhibitors class, with no clinically meaningful differences between agents. Side effects are infrequent with ACE inhibitors, and are usually mild in severity; the most commonly occurring include cough and hypotension. Captopril and lisinopril do not require hepatic conversion to active metabolites and may be preferred in patients with severe hepatic impairment. Captopril differs from other oral ACE inhibitors in its rapid onset and shorter duration of action, which requires it to be given 2-3 times per day; enalaprilat, an injectable ACE inhibitor also has a rapid onset and shorter duration of action. Pharmacology Angiotensin Converting Enzyme Inhibitors (ACE inhibitors) block the conversion of angiotensin I to angiotensin II through competitive inhibition of the angiotensin converting enzyme. Angiotensin is formed via the renin-angiotensin-aldosterone system (RAAS), an enzymatic cascade that leads to the proteolytic cleavage of angiotensin I by ACEs to angiotensin II. RAAS impacts cardiovascular, renal and adrenal functions via the regulation of systemic blood pressure and electrolyte and fluid balance. Reduction in plasma levels of angiotensin II, a potent vasoconstrictor and negative feedback mediator for renin activity, by ACE inhibitors leads to increased plasma renin activity and decreased blood pressure, vasopressin secretion, sympathetic activation and cell growth. Decreases in plasma angiotensin II levels also results in a reduction in aldosterone secretion, with a subsequent decrease in sodium and water retention.[51035][51036][50907][51037][24005] ACE is found in both the plasma and tissue, but the concentration appears to be greater in tissue (primarily vascular endothelial cells, but also present in other organs including the heart). -
Lect 4- Depression Montaser [Compatibility Mode]
DEPRESSION It is a mental illness characterized by: • Pathological changes in mood • Loss of interest or pleasure • Feelings of guilt or low self-worth • Disturbed sleep or appetite • Low energy and poor concentration • It can be severe and sometimes fatal Symptoms: • Depressed mood most of the day • Markedly diminished interest or pleasure • Significant weight loss /gain • Insomnia or hypersomnia • Agitation Fatigue or loss of energy • Change in appetite • Lack of concentration • Poor self-esteem • Thought of suicide or death Types of depression: 1. Major depression 2. Chronic depression (Dysthymia) 3. Atypical depression 4. Bipolar disorder/Manic depression 5. Seasonal depression Mechanism of depression: Depression is associated with changes in the level of neurotransmitters in the brain that help nerve cells to communicate. E.g Serotonin, dopamine, Nor epinephrine The level can be influenced by physical illness, genetics, substance abuse, diet, hormonal changes, brain injuries or social circumstances ANTIDEPRESSANTS: Drug which enhance alertness and may result in an increased output of behavior. Potentiate directly or indirectly the action of • Dopamine • Serotonin • nor adrenaline the purpose of antidepressants is to increase the neurotransmitters in the synapse. ANTIDEPRESSANTS : Used for the relief of symptoms of moderate and severe depression. Antidepressants are taken for at least 4-6 months . They can be used alone or in combination with other medications Types of Antidepressants: 1. Tricyclic anti-depressants (TCAs) 2. Monoamine oxidase inhibitors (MAOIs) 3. Selective serotonin reuptake inhibitors (SSRIs) 4. Atypical anti-depressants I. TRICYCLIC ANTIDEPRESSANTS : Properties of TCA: • Characteristic three ring nucleus • All are metabolized in liver • High protein binding • High lipid solubility. -
Calcium Channel Blockers
Calcium Channel Blockers Summary In general, calcium channel blockers (CCBs) are used most often for the management of hypertension and angina. There are 2 classes of CCBs: the dihydropyridines (DHPs), which have greater selectivity for vascular smooth muscle cells than for cardiac myocytes, and the non-DHPs, which have greater selectivity for cardiac myocytes and are used for cardiac arrhythmias. The DHPs cause peripheral edema, headaches, and postural hypotension most commonly, all of which are due to the peripheral vasodilatory effects of the drugs in this class of CCBs. The non-DHPs are negative inotropes and chronotropes; they can cause bradycardia and depress AV node conduction, increasing the risk of heart failure exacerbation, bradycardia, and AV block. Clevidipine is a DHP calcium channel blocker administered via continuous IV infusion and used for rapid blood pressure reductions. All CCBs are substrates of CYP3A4, but both diltiazem and verapamil are also inhibitors of 3A4 and have an increased risk of drug interactions. Verapamil also inhibits CYP2C9, CYP2C19, and CYP1A2. Pharmacology CCBs selectively inhibit the voltage-gated L-type calcium channels on cardiac myocytes, vascular smooth muscle cells, and cells within the sinoatrial (SA) and atrioventricular (AV) nodes, preventing influx of extracellular calcium. CCBs act by either deforming the channels, inhibiting ion-control gating mechanisms, and/or interfering with the release of calcium from the major cellular calcium store, the endoplasmic reticulum. Calcium influx via these channels serves for excitation-contraction coupling and electrical discharge in the heart and vasculature. A decrease in intracellular calcium will result in inhibition of the contractile process of the myocardial smooth muscle cells, resulting in dilation of the coronary and peripheral arterial vasculature. -
Drug Class Review on Targeted Immune Modulators
Drug Class Review on Targeted Immune Modulators Final Report December 2005 The purpose of this report is to make available information regarding the comparative effectiveness and safety profiles of different drugs within pharmaceutical classes. Reports are not usage guidelines, nor should they be read as an endorsement of, or recommendation for, any particular drug, use or approach. Oregon Health & Science University does not recommend or endorse any guideline or recommendation developed by users of these reports. Gerald Gartlehner, MD, MPH Richard A. Hansen, PhD Patricia Thieda, MA Beth Jonas, MD Kathleen N. Lohr, PhD Tim Carey, MD, MPH Produced by RTI-UNC Evidence-based Practice Center Cecil G. Sheps Center for Health Services Research University of North Carolina at Chapel Hill 725 Airport Road, CB# 7590 Chapel Hill, NC 27599-7590 Tim Carey, MD, MPH, Director Oregon Evidence-based Practice Center Mark Helfand, MD, MPH, Director Copyright © 2005 by Oregon Health & Science University Portland, Oregon 97201. All rights reserved Final Report Drug Effectiveness Review Project TABLE OF CONTENTS List of Abbreviations ............................................................................................................................... 4 Introduction............................................................................................................................................... 6 Scope and Key Questions ............................................................................................................. 12 Methods -
Annrheumdis-2019-216655.Full.Pdf
Recommendation Ann Rheum Dis: first published as 10.1136/annrheumdis-2019-216655 on 22 January 2020. Downloaded from EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease- modifying antirheumatic drugs: 2019 update Josef S Smolen ,1 Robert B M Landewé,2,3 Johannes W J Bijlsma,4 Gerd R Burmester,5 Maxime Dougados,6 Andreas Kerschbaumer ,1 Iain B McInnes,7 Alexandre Sepriano ,8 Ronald F van Vollenhoven,9 Maarten de Wit ,10 Daniel Aletaha,1 Martin Aringer ,11 John Askling,12 Alejandro Balsa,13 Maarten Boers,14 Alfons A den Broeder,15 Maya H Buch ,16 Frank Buttgereit,5 Roberto Caporali,17 Mario Humberto Cardiel,18 Diederik De Cock,19 Catalin Codreanu,20 Maurizio Cutolo ,21 Christopher John Edwards,22 Yvonne van Eijk- Hustings ,23 Paul Emery ,24 Axel Finckh,25 Laure Gossec ,26 Jacques-Eric Gottenberg,27 Merete Lund Hetland,28 Tom W J Huizinga ,29 Marios Koloumas,30,31 Zhanguo Li,32 Xavier Mariette,33 Ulf Müller- Ladner,34 Eduardo F Mysler,35 Jose A P da Silva ,36 Gyula Poór,37 Janet E Pope ,38 Andrea Rubbert- Roth ,39 Adeline Ruyssen- Witrand,40 Kenneth G Saag,41 Anja Strangfeld,42 Tsutomu Takeuchi,43 Marieke Voshaar,44 René Westhovens,19 Désirée van der Heijde 29 Handling editor Dimitrios T ABStract fails, any other bDMARD (from another or the same Boumpas Objectives To provide an update of the European class) or tsDMARD is recommended. On sustained For numbered affiliations see League Against Rheumatism (EULAR) rheumatoid remission, DMARDs may be tapered, but not be stopped. -
Introduction to Pharmacodynamics Reza Karimi 6
CHAPTER Introduction to Pharmacodynamics Reza Karimi 6 1. Understand the physiology behind the gastrointestinal tract and the route of oral drug administration and VES physiological influences on pharmacodynamics. I 2. Understand the dynamics and functions of the major signal transduction systems and their different biomedi- cal and biological responses in regard to receptor–ligand interactions. 3. Learn about the dynamics and mathematical expressions behind receptor–ligand interactions. OBJECT 4. Understand dose–response relationships and factors that affect a pharmacological response. 5. Learn about agonistic, antagonistic, and partial agonistic binding of drugs to receptors. 6. Learn about different concepts such as addition, synergism, and potentiation that lead to an enhancement effect of drugs. 7. List a few regulatory mechanisms for receptors. 8. Implement a series of Learning Bridge assignments at your experiential sites to bridge your didactic learning with your experiential experiences. 1. cAMP: cyclic adenosine 3' ,5''-monophosphate; a second messenger that plays an important role in signal NS transduction. IO T 2. cGMP: cyclic guanosine 3' ,5''monophosphate; a second messenger that plays an important role in signal I N transduction. I 3. Dose–response relationship: when an endogenous or exogenous ligand binds to a receptor and produces a EF D pharmacological effect. The effect can approach a maximum value (also called Emax) in which a further increase in the ligand concentration does not produce any higher response. 4. Efficacy: the ability of a drug to produce a pharmacological response when it interacts with its receptor. 5. First-pass metabolism: a type of metabolism in which drugs that are absorbed by the gastrointestinal tract go through the portal vein to the liver and are metabolized there before they are distributed to the general ERMS AND AND ERMS circulation.