<<

KRO100945

KAERI/RR-2094/2000

NR

Study on the characterization of the radiography facility in HANARO for two-phase flow research

X} PLEASE BE AWARE THAT ALL OF THE MISSING PAGES IN THIS DOCUMENT WERE ORIGINALLY BLANK # 2000 •%•%• NR

2000. 1. 29.

NR $

T3 o ot

NR

II

7]

-g-^

lfe o]-

_o.J£

- II - IV.

7] ^4 BNCT 2*\^X\2i\ f'W ^ #^^r ^7V^-^ BNCT 1H NR 54€^] ^^.4 -T-^«}3- BNCT

, film flow 4.

length)* ^^ ^^(calibration curve)#

A}-§-§1-JI ^c]-. a. fe slit AS ^Sj-JZ. ^11- MCNP

V.

a. ij-^i ^«g^. ^.§1-^ <^^ ^-a] y^s. xfl-g-34- 200Hd°fl ^*3€ BNCT ^ofl^fi) HJ S.AJ ^^ Ti^M. ^2£ §H ^7> il #H1S- ^-^§1-31 •§- 'ST3- 4^11-i- ^-«H 2001^^1 7-Hl5}4 image intensifier ^«ll-

- Ill - -g-tH film NR

- IV - SUMMARY

I . Project Title

Study on the characterization of the neutron radiography facility in HANARO for two-phase flow research II. Objective and Importance of the Project

The neutron radiography techniques are categorized into two; radio- graphy of static objects and that of dynamic object. The former is mainly applied to the nondestructive testing and the latter is applied to the two-phase flow research. In Korea, the static technique has been applied to various industries but no research has been done in the dynamic technique area. For the application of neutron radiography technique to two-phase flow experiments, the research items to which the radiography technique gives the better experimental results than the other experimental techniques should be identified. In addition, the proper experimental devices including camera, converter and image processing system should be prepared and the method to get the calibration curve necessary for the two-phase flow experiment should be setup.

III. Research in Other Countries and Korea

The researches on two-phase flow using neutron radiography have been performed mainly in the United States, Canada and Japan. In 1980's, the United States leaded the research in this field. In 1990's, Japan and Canada have made major achievements. In these days, the researches are most vigorously performed in Japan, which is indebted to the operation of JRR-3M. In Korea, it was impossible to perform the two-phase experiment using radiography due to the absence of equipments. Considering the merits of neutron radiography in two-phase flow research, the investment on the dynamic radiography is believed very valuable.

- V - IV. Contents of Project and Results

The first objective of this project was to survey the equipments including the neutron beam required for radiographic two-phase flow experiments in HANARO and to prepare the hardwares and the software for image processing. The study shows that the characteristic of neutron from the BNCT beam port is better than that from the NR beam port and even the high speed neutron radiography(HSNR) can be performed in the BNCT facility. Thus, the survey of equipments was focused on the camera and the converter required to HSNR. Also, the hardwares and the software for image processing were purchased. The second objective was to confirm the needs to use radiography for two-phase flow experiments and the find the measures for the preparation of equipments required to build the test loop. Several experimental items to which the radiography technique is beneficial were identified through the review of the outputs from the related researches and the discussions with experts. It was confirmed that the existing facilities and devices in HANARO could be spared for the dynamic radiography experiments. In addition, a test section for the research on characteristic of film flow was built by using the residual budget of this project. The third objective was to setup the method to get the calibration curve necessary for the two-phase flow experiment. The comparisons of the neutron attenuation ratios obtained by using radiography technique with them by MCNP calculation show that the characteristic curve can be obtained without the experiment, which is believed to facilitate the design of a experiment. In addition, it was found that the image processing system prepared by this project could be used for the in-service inspection of HANARO.

V. Conclusion & Recommendation for Further Research

The decision on the equipments required for the dynamic radiography in HANARO will be made based on the outcomes from this project and the

- VI - measurement results on the BNCT beam characteristics which will be performed in 2001. The key equipments such as camera and image intensifier will be purchased by using the resources from the neutron beam utilization project. If these are realized, the dynamic radiography technique should become a good tool for the two-phase flow research as well as for the flow visualization for heat transfer enhancement research.

The experiments on the film flow by using the existing NR equipments will be performed and this will be the first step to fulfill the needs on the two-phase research using dynamic radiography technique.

- VII - CONTENTS

Statement for Report Submission i Summary in Korean • ii Summary v Contents viii Contents in Korean x Contents of Table xii Contents of Figure xii

Chapter 1. Introduction 1 Section 1. Background of Project 1 Section 2. Objectives of Project 1

Chapter 2. Research in Other Countries and Korea 3 Section 1. Two-Phase Flow and Neutron Radiography 3 Section 2. Research in Other Countries 4 2.2.1 Oregon State University 4 2.2.2 Penn State University 4 2.2.3 Michigan University 5 2.2.4 Kobe University and JAERI 5 2.2.5 Nagoya University and JAERI 5 2.2.6 KURRKKyoto University Research Reactor Institute) and JAERI 6 2.2.7 McMaster University 6 Section 3. Research in Korea 7

Chapter 3. Contents of Project and Results 8 Section 1. Investigation on NR System for Two-phase Flow Research 8 3.1.1 Introduction 8 3.1.2 Investigation of Neutron Beam 11 3.1.3 Investigation of Camera 17 3.1.4 Investigation of Converter 24 3.1.5 Purchase of Frame Grabber 26 3.1.6 Image Process Software and Computer 33 Section 2. Survey on Need for Two-phase Flow Experiment and Requirement 33 Section 3. Experiment on Characteristic Curve for Two-phase Flow

- VIII - Experiment 34 3.3.1 Experiment 34 3.3.2 Calculation Using MCNP 36 3.3.3 Analysis of Results 37 Section 4. Byproduct of Project 41

Chapter 4. Conclusion and Recommendation for Further Research 44

Chapter 5. References 46

- IX - Summary v Contents viii

5. •=- *} xii ZL ^ ^-^h xii

1 2 # ^"^ ^^ €% 3 ^1 1 ^ «»1^ -fr-i- ^^s} ^84 eflcliaeF^ 3 ^12^ ^^sl oj^- ^% 4 2.2.1 Oregon State University 4 2.2.2 Penn State University 4 2.2.3 Michigan University 5 2.2.4 Kobe University^ JAERI 5 2.2.5 Nagoya University^}- JAERI 5 2.2.6 KURRKKyoto University Research Reactor Institute)^ JAERI 6 2.2.7 McMaster University 6 4 3 £ ^£1 <2^ ^^ 7

3 ^ ^^ « ^^ Ml-8- •4 1 ^ 3.1.1 3.1.2 3.1.3 ?H^ ^S 17 3.1.4 #«-^ ^S 24 3.1.5 Frame Grabber^} ^nfl 26 3.1.6 °§^ ^2] software ?J ^^ ^^ computer 33 ^1 2 ^ °lAov -frf- ^ ^r^- ^ -^^ -S-^ 4«t 33 ^1 3 ^ f-^j «4V ^^-1: ^* ^-S ^^ 34 3.3.1 ^^ 34 3.3.2 MCNP1- <>}•%••& A& 36 3.3.3 ^2}- ^7} 37

- X - • 41

• 44

• 46

- XI - TE S. a 3-1. €*rs ^ ^ aiH 12 a 3-2. ?M?}2\ fl-^ aja. 20 a 3-3. Image intensified TT3 alS 22 a 3-4. 3&BH1 >M"§-3fe rflaajoi ^^4 ^ ^ 27 a 3-5. cflS^^l ^^ 27 SL 3-6. sH-3. NR ^«li^s] S.S. #^ ^4 28 S. 3-7. *l-i4SS> KURi^^l #S^ ^i^l &S. «1H 28 S. 3-8 DT-3152 frame grabber^! Spj 28

3-1. ^A efl^5-^et-3]» «>l-8-^: °1^ -fr-i- ^^ ^lf- 10 3-2. -5}M-£ t-94 HI 4f-;M afl^] 12 3-3. NR ^-^-«-Sl collimator 13 3-4. ^ NR ^11^1 T2-^ 13 3-5. BNCT &*}<£$ $\% 14

3-6. BNCT 2:A]-^oj ojljl 14 3-7. BNCT S^f^ ^^2] £^ 15 3-8. BNCT 5:4^^1 ^^^ 16 3-9. €-&?!:^1 ^ «1S 23 3-10. CCD pixels •a^t^^l ^S 24 3-11. ^^r^s] ^^r^1?! T'-S 29 3-12. #&^M-S NR -a»lo)1^5] 2iS. Sf?§ ^^1 31 3-14. s}i4s. NR ^tiloflA^ 3^5. #^ ^4 32 3-15. LiF-ZnS^ ^-^-^ 32 3-15. Film flow ^^4- ^tt test section ^g^l £^ 35 3-17. Slit si gap ^1 ^5}i 4# f^^s] 7ovifl - # 39 3-18. Slits) gap ^A ^S)-°l] 4€- ^A^r HJ^1 7J-ifl - f^ 39 3-19. ^^ 25 mm ^tf path length^ 4^ ^A^r MJ^1 ^"^1 40 3-20. ^4 slit^-Hsl ^^ ^ $$: AS. «1H 40 3-21. *fi4S. €4£ -n-*?!: #-¥-«>fl tfltt 42 3-22. O.^ 3-21

- XII - all 1 & M

TRIGA Mark III ^?St *]•%•& *H 5*31, 1995\! 30

^-(dynamic) ^ 7l^S 4^ ^ Si4.

l- ol-§-*]- 7]£4Hvoid fraction)^ #?§, Tfl^ ^(interfacial area) 8- ^rSj ^-^ ^# ^-^ -o-s.

^r^r^-(window)

fe of el] 2]-

1) ^^m(real time: 30 frame per sec)^ ^ *

- 1 - 2) £-$ 7H1W 3W(converter)s} 7 9? ^^ -a.?i

-gal

1) ^-^ ^l^-i 2) &W$ *)•%• ^^ ^l^l^i ^-^-^fJL Sife ^^- ^e)(image processing)

- 2 - all 2

°1# -fr^m 71^-1),

information)7}

500S] tflx] 10003

0.05 mm

20 cm X 20 cm tomography 7l## oj-g-s^

- 3 - fe- SUSM- AH

. 1980k!CHTT

2.2.1 Oregon State University

ol^Mfe 3000 MW^Hs] ^i ^:^^^ TRIGA

^ ^§-7} 7}£.7} -S-^§>fe ^-i: 1000 frames/sS] € ^"(converter) ^ aV-§- ^ofl ^fl^: ^^1" ^^^^4. Robinson^ Wang[5]^ ^^Xwire) ^^5] T^S y]-i-(pool boiling) ^-l- integrated flux pulsed(flash) radiography 1- 6l-g-§M ^#^f^^ # ^°ll^^ ^7) 7}&$] 0)^4 ^7l (steam) 3] ol^-g- zvzv 5000 ^ 1000 frame/s^ jl^

^ framed frames/s)^l

2.2.2 Penn State University

Penn State tflSHWfe TRIGA-III . Cimbala [6,7]^ ^^^ ^r^°11xisl 4r^ ^^(flow pattern)-!- ^A)# e^]u] o_zis]-iil# o]-g-

u ^ 5.^ -fi-f- ^i-i; snap-shot 0^* °l-g-«H L^ 5flt]£3.5]-3l(HSNR: High Speed Neutron Radio- graphy)^ 7>^£ Jl^§l-^AM- S!]A}-£7V ^r^isj^l ^j-^o^ 1000 frame/si

- 4 - Glickstein[8]^ 5 cm ^ oval

fe- framed

2.2.3 Michigan University

Michigan tflsj-s] PML(Phoenix Memorial Laboratory) °!Hfe 2 MW2] FNR(Ford Nuclear Reactor)^: «l-8-*H

?> 2fl^_2-H5fsl(RTNR: Real Time Neutron Radiography)!- °l-§-§H 4L9.10]. 1994^^1 fe KURRiaf^ ^Q^S.*] ^^^-4 ^^^^^l^^ -fi-^ °

RTNR ^^7r KURRI^- JRR-3M°1H #°J?V ^ . °1 "S^i^fe ^8- ^^-(image enhancement)*

2.2.4 Kobe University-^- JAERI

Kobe cfl^l^s] ^T.} ^^SLII^S\O\}^ Sumitomo ^<$$] Cyclo- tron4[12,13,14] tomography Pb-Bi ^^1 ^-^rdiquid metal)^ -fr^-i: uL*H ^^^(tracer: Ag-Cd)4 o Pb-Bi-Cd)# l-§-§>^ ^:#*1-^J1[14,15], tube-bank JRR-3M ^^>S^ A}^^- oi^-g-^ BWR 4X4

CCD ?Hls}^ NIH image processorl- °l-§-«l-^ tomography

2.2.5 Nagoya University-^- JAERI

Nagoya tfl^ofl^fe- ^S IS ^2] ^xfs.# e>]-%-z}o?[

^cf. 1988^^1 fe NCT processing 1J-^-§- 7fl^>^ji[l8]J ZL heated pipe°)]^^ ^(evaporation) ^M -g-^(condensation) ! °l-§-*l-Sa4[19,2O].

- 5 - o} #%. #6] «|#(flow pattern transition)^: ^ #&]-$! 31 «]-§-•&]- et°1H3 Li4 P JRR-3M

2.2.6 KURRI(Kyoto University Research Reactor Institute)£f JAERI

fe 80^31 ^HV^-E 51 Tflf-^1 tfltb •a^-l- KUR-i: °l-g-3H blanket^

[28,29]. (conductance prove)* o

90^1 tfl si fe^ ^^^r^^: Mife JRR-3M<^1 ^^s]^^f KURRial 1-4

^^ JRR-3MS1 ^g-£ s] 7l£-|:S] ££_£)• ^-§- ^ ^o] ^ IHHKannular flow)^l^s] JS^^(distur- bance wave)!- 1000 frame/sec^ ^£S. ?t#l- ^ ^^^-[33,34,35]. JEtb, ^A^ booster)* 4-g-«l-fe ^-f^fe KUR^l ^^^}^6.S.£ JL^ efln) o_n

2.2.7 McMaster University

McMaster

A v °J o ^5l zflf-Sl P1H]S. ?1«H image subtraction^ ^^ 2:^.^^ °j 4=. Tfl^(interface)$]

Taylor bubble-§- ^^^f^-c-^l background image-2! averaging, low pass filter, edge contour map ^ intensity contour map -^^f ^-€r Sr^ 7chS}- 7]^^ A]£§} ^4[39]. Bubble column^ tfltb ^l^i^fe ^1^ ^^ ^ 7l^-i-§- *j^o.5.

^^«F5!4[40]. o)^§v 4^^ 7-1^ <8# ^e] Tfl^f- * «ov^oi ^HI^ ^, Abel inversion techniquel- ol-g-SH

- 6 - , ^ ^AoH) cfl-sM X-ray

PWR , CANDU ^^^^^11- ^S>-3_ %•!§• <$*\z\- stratified wavy 4(interfacial wave)^ ^^r ^:^-«>^IJL[44]. swirl flow7> «]^§- (boilingW ^l^lfe ^^1:

TRIGA Mark III

fe 156 msec^l ^z\ #£# ^fe °§

.-g.oi ^19>€ «V , djafl Hi ^(entrained droplet)^

ojofl cll^j- A|^ ^f^ Pfl-f

- 7 - 3.1.1

^^A 2flc1ili2?-3|l- ol-g-^ °1# ^ #^ ^lf-i- 5^14^ ^ 3-1 4

beam portfe ^§>^ Bi-filter dynamic range* 3.7\] *}JL

o>

dynamic range7l-

ZnS

- 8 - converter)^ 7^51534. o]s^> f^fs]

Image sensing device^ &S.*Q #<^ M}-^^C ^^ 80^tfl &°\°)ty. *]-?H±r SIT ^°1 ^6! 33 msec(30 frame/sec)S Slfe- ^^^HMCimage intensifier)°1 HSNR(500-1000 frame/sec)i 7}^

<§# ^^ ^>a]l- ^^ grey levels ^^l i^lf «l-g-*H #^3 ^^11- ^Hfe

^^-H^ micro computer^^ 7fl?l-8- ^B]3. ^r^^l-^31, RAM^l -§-^°l ^^SJ-^^A^ image 7 Vl boards buffer memoryl- 4-§-*r^! l^-& ^^f^^i RAM-^ °l-g-sf^ wo S^-S.

8-^-o.S.^ image ^^- ^r£# t^ ^ ^ Si^.^ RTNR lfe image ^^^i 4^ -8-§- ^i^} #^^H« ^^1^^-S A>.g-S|7f|

image

3-H sm ol^ -B-f- ^^ TJ|# ^ ^^- s]Aflo.s £]o| 01

— 9 — Reactor - The higher flux is the better. Undistorted neutron beam

Object - Determination of working fluid - Construction of small loop Distorted neutron beam

Converter - Efficiency Photon having geometric information

Camera - Spatial/temporal resolution Current Image,,Board] - Speed and dynamic range ± Grey level

- Image software (Filtering, averaging,subtraction, edge detection) - Digitization of image

Interface information :Void, film, wave

3-1.

- 10 - 3.1.2

NR yJ f-JiS] *fl4fe ^ 3-24 to NR ^ ^iiife 3-34 ^ in-pile collimator7|-

Collimator4

71- 82 mm°l 50 mm°J «] aperture

NR 3-44 2 ^4^4 3.71 fe £ 120 4°H1^ 30 cm

^ 152.7]- 44 ^44 ^ *|| 2 AV ^.^ fe JRR-3M NR HSNR* 4 BNCT

^l£ NR 4 aJ 7-1514 ^ NR BNCT HSNR£ 7f^ 4^-1: ol- 2 BNCT 3-84 6X4.3 m fe 3.5

fe ^ NR fe BNCT

- 11 - 3-1. £ a ^

*m-S. NR JRR-3M NR *l) 2 2:4^ BNCT (20 MW) (30 MW) (30 MW)

1.5E8 5.4E6 3.0E8 (n/cm2-s)

6.3E6 1.6E6 1.5E8 (n/mR-cm2)

L/D 176 266

S'l'l

IK

r\

e ST2

NK

"Ct: •T-l

3-2. Mo|

- 12 - 8.C Hi"AVY ?LATSS C0?fCRE-=: GORA'. LINING

"""

3-3. NR 1J^-M°| collimator[48]

Floor 1st Exposure Cell 2nd Exposure Cell 1 m

1. Main beam shutter 2. High-radioactive material access plug 3. Sample table 4. Image processing TV camera box 5. Entrance door 6, 7. Shielding (polyethylene, steel and concrete)

J 3-4. ^ NR 2Ar^o| ^

- 13 - 3-5. BNCT

3-6. BNCT

- 14 - 3-7. BNCT

- 15 - 3-8. BNCT SA(-^°| ^.£[53]

- 16 - 3.1.3

fe Orthicon4 SIT, CCD , Orthicon4 SITfe tube) ^A^A] ZL^ 3-9

3.1.3.1 Orthicon Orthicon^ X-ray-g- [24,25]. Orthicon^c- iconoscope^] ^14. Iconoscope

51 ?5f)l- 1000V

RCA A}° s] . Orthicon^ V oi 1939^°!] ^°] M-ffijt contrast7>

3.1.3.2 SIT(Silicon Intensifier Target) SITfe ^.4 real-time radiography^ SX°] Aj-g-s]jL

[31,44,56]. SITfe ^-^1^4 ^e)§ ^Hfl EfTjl, #*}*£ tfl-g-sH ^^1 ^-^i^-* 3-10 kVS.

1969^ SEM(silicon eletron multiplication)^0]

^r SIT 3H image intensifier ISITi

3.1.3.3 CCD(Charge Coupled Device)[57] CCD2}fe ^^ ^ #, photon-l: a]7> CCD ^A^JL §>fe 5i^& ^IHAS. line arrayM- area array 13 ^ S^- 4^^ CCDS] «fl

- 17 - 2i ^^ ^ 3-1CH #^J15 AiS)-

1:4 p-layer A>a]o|| A^7]^ 4^ ^x]-4i . Eletron^l -^tN 44*] 4 pixels] -Jf3?] ^i?3tol 1>^^1 S)JL ^11- potential well° potential well-c- charge #, electron #•§• ^1^-§}-fe capacitor^l ^--§- photono] «>£^lfil p-n junction^! ^i:0]7^ nfl^l electron-hole pair7l- ^^ #e)^AS. ^]a)*!- Sl4fe photoelectron 2.^-5. 'g-^^ o|cf. Positive charged carrier^! hole°l p-layer^l i1^^^ -§-^l: ^=1 electron^ &7]#£\ 7]^7}o\] 45} g\±$:^°_£_ ^, potential wellS. ^l^fVcf. Electron^ pixels 0} ^Jofl ^#slfe =•<£ ^1^^6.3. ^^€4. 3.E^, pixels * o|4. tfl7Hs] CCD ^^-^ pixels 10,000711 oflA^ 100,0007fi a) Sife full-well capacity % 7\*}5L 3lA. ii#slfe ^

Pixels £ 4§ ^K1^ =1 *M^ ^-5- ^^4 #^2] alS ^^Elfe fill factor^ aperturel- # ^ S14 °1 &£ ^-^^ ^HO> S^ ^I^fl tfl^^ 100% 1- 71-^^ interline-transfer IM^ CCD ^14 fe 15%

-fJE Si4. Pixell-s] aperture7> ^l^s]^ ^r=l TTT-0)^?}- potential well ^Aj4 read-out ports, chargel- °l^}?]-c-tll A]-g- 5]fe metal conductor4 •^•^T-^^-S. charge!- ^^M £|sfl masking«>fe ^^°11 . Fill factorl: ^=^1^1 fe- t-floJlfe- ^ 7M ^o] S14. Back-thinning ^-S substrate ^f'S-i: ^^ 4°la.s. ^j£ f. Back-thinned CCDfe ^ S% o| 7]»J^ J2.of^) charge* °JA1 -7l ufl^ofl ££ CCD architecture^ ^ Si4 ^-4 ^^^ O.S. fill factorl- %HU1H ^ Slfe tfl^^-S.^ ^4^] pixels]

4. °l tioVt^^-5. pixels] light sensitivityl- CCD ?H2fe i# ^^4 eflcliZLH}3li Af-g-s)jL sa4[36,58]. CCD # 4-§-4^ ^^lfe ^s] «g=-i: ^7H?]7] ^§H image intensifier* ^l -^4 Image intensified 4?i^^4 ^^ 4°l°ll

- 18 - 3.1.3.4 °1# -fr^

intensifier^

CCD7> ^AtW. Alf'ofl^ ^*v ^ oife ^Hlef^l fl"^^ a 3-24 A1 ^H: ^r Slfe image intensifier^ fl1^^: 3. 3-3^1 ^e]«f^4. S 3-2-^1^

^ ^^^ 500

- 19 - s. 3-2.

Sensor ilr^T «*E(H»V, Speed(fps) (lux) 30 SIT Kongsberg OE1324(color) Photocathode 700x525 10-'

ISIT it OE1325(color) Photocathode 500x525 30 5xlO'6

OE13-100/101 30 ICCD n CCD 500x525 6x10-° (color) Memrecam NAC Micro 510x484 100-500 Camera(color) HSV 500 C3 solid state 510x485 125 (color) image sensor

HVS-1000 » MOS 460x350 500 (color) Memrecam Ci CMD 572x434 100-2,000 Digital (color) Memrecam Ci n /Rx-2 CMD 510x484 100-500 High Digital(color) speed Hi-cam(8bit) 480x420 60-8,000 Camera Ultima-40K Photron MOS 256x256 30-4,500 (8bit) Ultima-I2 MOS 256x256 30-4,500 (8bit) Super 10K CCD 512x480 30-250 (8bit) CCN500 CCD 640x480 30-500 (8bit) Spectra MOS 256x256 30-4,500 (8bit)

- 20 - 3-2.

Sensor 1^-n- «11#£.(HxV) Speed(fps) (lux) SR-500 Kodak CCD 512x480 30-250 (8bit) SR-1000 CCD 256x240 1000 (8bit) SR-ultra CCD 256x120 2000 (8bit) High speed 4540 CCD 256x256 20-4,500 Camera (8bit) RO Imager 512x384 250-1,000 (8bit) 1012 NMOS 192x239 50-1,000 (8bit) 2000 512x384 30-2,000 (8bit)

- 21 - 5 3-3,_ Image intensifier^l

Wavelength of Minimum Effective Radiant Emittance gain Limiting resolution A2:31 Af maximum gain Diameter Effective coupling (W/mVW/m2) (line pair/mm) (run) (mm)

Ilamamatsu V2697U 430 8700 30 18 CCD, Vidicon

V3346U 430 8700 30 25 CCD, Vidicon

V4170U 430 4xlff 25 18 CCD

V5180U 430

V7363A 430 25 CCD, Vidicon

V7670U 430 6800 48 25 CCD, Vidicon

- 22 - Television camera output versus light input

J ?

3-9. #^^s| M^ td|jn[54]

- 23 - Light(Photon)

<* Metal Conductors

Oxide Layer (Insulator)

p-Layer Photoelectric Effect

3-10. CCD Pixels]

3.1.4

3-4% ZnS, Fr, Tb

1 ^(resolution)0]

- 24 - sensitivity)0]

Bossi[4], Hibiki[33], Suzuki[60] ^ Brenizer[61] ^

Gd2O,S4 GdOBr^l 400 ^sS^i Ji# -fi-e) ^^-^1^ #dfl ^l#^r 40-60 ns^^i #31

ZnS ^^-^Ifil ^^-^ ¥ 7H ^ 7JV7J- 40-100 ns, 40-100 jus °]A. oll" 10Bt- A>-g-^ ^ oifec-ll y^^-¥^ 6LiF

ri fe LiF/ZnS:Agq- GdaCVZnS:Ag* 4-S-*Vfe 50

, 100H11 50 mg/cm2

A]- NE426 NR

^•§r 2000\! 9€ 22^^ 16:00^ 1&30 4°H1 24 MW, ^H^-^ 347 mm 1 ^ blue lighter ^ 10% o}B-3. blue lights] =9-foflfe 1.3xlO17 photons/s4 ^^-7} 1 ffe 1000 ft-cd°fl «HWs 1 lxfe 0.0929 ft-cd°14.

3-74 90%

- 25 - 3i[4]fe- LiF/ZnS^ (ZnS) *a^>3 317] ^

0.1-0.24 ramt *1W4$4. Bossi^ ZnS/LiF

«]7>

60 /zm 2 ol^o]

O^7]ol] fluence7]- <>)i^ nv^ ^§D^ofl cg^^- ^T] ^-^ sl^3 fluence7|- ^^-^]44 ^fl§rfe3l Bossi[4] fe- LiF/ZnSl- ^f-^-^f^ ;g-fo)] o] ^o] io7 n/cm2 30 MW ^r^i^l0!] §>4S- NR ^il 2 ^^i^^ ^^4^°l 5.4xlO6 n/cm2-s BNCT SAj-^oilA^ ^^x^o] 3.0xl08 n/cm2-s olH.S. A *§••%: -S-^l^: ^r Slfe frame rate fe AA 0.5 ^ 30 fps °^-%:

3.1.5 Frame Grabber^! ^p-n]]

Frame grabber Frame grabber

- Spatial resolution

4-2-fe ^Is^i S^^ ^^^ ^-r-^lfe RS1704 CCIR Vl fe NTSC «o ^4 PAL iHo] S14. Frame grabber* V^ -§-

bitT=7l- €-r^- dynamic range7f

7ov£7> A-114^ 3711 §-^1=1^ ^fe4 Spatial resolution^

s-4. o]s- Aj-%1-^- ji3^*H Data Translation^^ DT3152* ^H] •^^r a 3^84 ^4

- 26 - IE 3-4. gj #^011 -XI

Emission Abundance Mode of Cross-sections Max. Material of parent production of Half-life (barns) Type Energy (%) active isotope (MeV)

Litium 7.4 Li°(n, a )H3 935 Stable a 4.7

Boron 19.5 B'°((n, a )Li7 3,837 Stable a 2.3

14.7 GdIS(n,e)Gd136 58,000 Stable 0.14 Gadolinium e 15.7 Gd1S7(n,e)Gd158 240,000 Stable 0.13

3-5.

Gd2O2S Apex Research

GdOBr:Er Generic Electric Lockheed, Palo Alto, Ca

Gd2O2S:Tb Konishiroku Photo. Ind. Fuji Film Ce-glass Nuclear Enterprises(905)

B/ZnS Nuclear Enterprises(402)

Gd2Qi/ZnS:Ag Kasei Optonix Kasei Optonix LiF/ZnS:Ag Nuclear Enterprises(426)

Gd2O-,S:Tb+La2O>S:Tb 3MCTRIMAX-6)

- 27 - 3-6. ol-'-l-g, NR ^Q|o||A-io|

#3 31*1 Sis (1) (2) (3) (4)

1 31.5 47.5 76.5 (cm)

S£ 74.9 76.0 65.4 5.43 (mix)

3. 3-7.

A ^SLII e> si -a«HHsl (mix)

2 (n/cm -s) 31 # &

KUR 1.2xlO5 NE426 22 19 4.3xlOc LiF/ZnS:Ag 74.9 68 (24 MW €-?i^)

3-8 DT-3152 Frame Grabber^! ^

Spatial •3^ US. *^ bit^r Resolution RS170/CCIR 4096X4096 8 bit NTSC/PAL RAM

- 28 - <- Protective Layer {\Ofxtn Acetylceilulose)

oooooooooooooooo <~ Fluorescent Substance ' ooooooooooooooooo 6LiF/ZnS:Ag) oooooooooooooooo light-Absorption Layer

Supporting Layer {0.15mm Paper)

<~ Aluminium Layer (0.8mm Al)

Composition of Fluorescent Substance Layer

Weight Ratio of 6LiF to ZnS:Ag is 4 to 6. Weight of 6LiF/ZnS;Ag is about 45 mg/cm;. Particle size of 6LiF is about 8 jum. Particle size of ZnS:Ag is about A/j.m.

- 29 - 3.0 -

2.0 -

1.0 -

10 Thermal Neutron Exposure(n/cm )

3-12.

- 30 - 31.5 cm

Mirror Converter

(2)

45 cm (1)

(3)

29 cm

(4)

Camera

3-13. sms NR ^ u

- 31 - 30 40 50 60 80 90 Distance from converter (cm)

3-14. NR

100 Slab Model

Q _J UJ

Experimental o

50 UJ >

UJ

J_ 0.5 2 3 4 WEIGHT RATIO, ZnS/LiF

3-15. LiF-ZnS£| ^^^[4]

- 32 - 3.1.6 >)B) software computer

frame grabberl-

software7> image-pro 4.1-i-

640x480

- CPU: Pentium-Ill Dual 800 MHz - nfls.e|: 512 MB - Main board: Tyan PDVIA - Graphic card: AGP 32 MB MGA G-400

7]

A. Pb-Bi B. tJ-gr 2-1 CHF C. z| °1A f- flow , 7]g. , 7}g_ 3.7],

D. Flow regime transition *] 7)3.^^, breakup-^s] ^- E. Stratified flow°ll^ film thickness #^ ^ 2D wave

C, D air-water °.^ A, B

- 33 - -§-«Hr -g^ ^-foflfe E-D-C-B-M ^ A)^o] ^*o} Ji;^ #^6fl^ ^^-*>4JL BNCT 54-MI- °l-i-§H &:&£. ^M *l-g<^H ^ 4. A4 B^ ^# ^«7l ^Mfe 13H 1:^71-^ ^71, #^ loopl- ]^ 2^> ^4^7f ^^§1-4. ^7fl *>q-Si ^1=1^ $a*r ^-71 ^y| ^. ^ oil: ^^4 ^"^1-71^ ^^«M 2*} ^zK^fe €^1] A>-g-§>ji o^^] $*.

data acquisition Tflf-i- 4-g-1^ ^ SZ^H ^7}$ H]-g-o] S y v - ^ 3*H i^>^ ^^^-°] s ^§]-^3i o) oflxv^. i!-g-§H ^.^ 3-164 film flow!

length)* ^(calibration curve)^l

gap size* ^fe- slit ^ ^ofl tfl*H, o.s ^sfi oil- MCNP ## S=# 6 4 «15L«H ^5*4. 1# slit ^ 4^ ^^4 *.^7|. ^^ ^^-n]^- 60615.

^^^ «^B NR ^}^c)| A^^)£1O| oj^. SIT

x-ray ^#^>] Gd

3.3.1

Slit ^ ^-^1 tfltb SAfTT NR ]i Slit ^ W ^1 1 S4^4 ^ 2 SAf^ Afojo^ aj %>o.S^-E^ 108.5 cm

- 34 - 092 "" ooi "os~i

MOU E OIJK« E

'K KO t, liO g LQ]

1 m BOW 3: ^ ~ 20 5 H . § ; Hi)- • o < cc CM ; •z. m

o 3 CD

<-v *;•*•• CD CD

oef" " ""Is s ol- m

'OS ; •II E ?!

CD

CO "OS" 09~ ' Q n

9E Qd 3W# slit 24 MW°J

fe ^f-ir photo densitometerofl

7/ : ^f 1-°H # Sfe f1^!- ^S ^1^ 4^1 <*}*] $•& intensity

7e : -S^l- ^hS- ^^ 4^ °fl^ H^: intensity A 7d : 2:4*171*1 ^^ ^#°il 1 H^: intensity

3.3.2 MCNP#

v y 7H wo ^ ^°fl^1fe ^-^1 ^#S(Monte Carlo) Tfl 7fl^5}fe ^^.S. ^51^ &4. NR ^^^1 tfltb 2£ f^oflA-i 7H1- ^«>?11 4^-s-T^ MCNP

^(parallel source)^14.

^^^(mono-directional) Sfe ^Kisotropic)

variance reduction HJ-^-i" 4-§-«B0>

- 36 - fe 'cone directional biasing'

. NR ^ 31 ^*1 Sio.q- JL^ ^ l/v

Maxwell ^^(Maxwellian distribution)!- D-^

jp 1/2 - ' (2) k: l-aDJ:(Boltzmann) 4v^r (8.6170x 10~5eV/K). Maxwell ^-^^ ^^}- i^j^ej^ o] fl Maxwell ^£» ^ferfji ^ Maxwell

x-ray ^f-°l] ^]^§>J1 Sife Gd(Gadolinium)^

i i?r = |J \Ni{E)o r(E)dE, 4>{E) : ^^>#, Gd

MCNP

3.3.3

Slit-gr #S ^M-l: ^ 14fe n^ 3-173]- ^o. mm IMT.:) ^IJL ^S?>fi1 7-15]7} 5t o.76 mm°J ^014. oj

-i- ^Ji °1# test section^ -i?H #-§-^-^.SM) test section-Si ^7Jl4 test matrix^

- 37 - 25 mm 3HH U path length^ 4^ aJ^ ^4

^ ^^«.S-4^ 21 mm ^^i ^Al§>^cf. ^^^ ^-f^^r slit2)

3-20^1 fe €4 slit^l # Sfe ^^r* ^M^r ^ path length^ A^ yJ^ ^-4 ^£1- slit^D^^ ^4 ^£4 7EVO1 M-EM&4. Slit^i ^-f ofl beam path Iength7> 7}% A ?A-^ 11 mm^]Jl ^r^] cfl^ ^^^ ^ 7}^ path Iength7} #^ 51^ 11.4 mm ol4. ^ ^-T- path Iength7> ^i?l #^^^ ^s] =6.3. 10 mm f ^ &TT ^°1^4. ^31 vfl^ol 23 mm°dir

1f 3=6>^>H 1.5

mm 4 411 ^^ofl^fe. slit°fl

- 38 - Neutron Beam Attenuation through H2O (Slit)

1.0 : | i j 0.9 H i j — | L ... 0.8 — — - • - - - fitting (?tl ii)

1 fitting (t| a) I" ; i i — ! : 1 I ? 0.6 1 i

I 0.5 | | i •

03 i I 0.4 CD

_...J....J—. — . ... I 0.3 |

0.2 : ! i i i 0.1 l' i l 0.0 5 6 7 12 Gap thickness (mm)

3-17. Slitsi gap

Neutron Beam Attenuation through D2O (Slit)

0.2

Gap thickness (mm)

3-18. gap

- 39 - Neutron Beam Attenuation in 25 mm Tube

! <• si-a- aiffl)" 1 »ll"i} (1)20) • / i-?''^ (1120) . s <*]•?! (1)20) . I • .?

*

* w i

1 A A A A A

• * • i • •

Beam path length (mm)

3-19. ^iS 25 mm ^oj|A-j Path length^!

Neutron Beam Aitenuation

Ai

1.0000 • ' ' "x ' S (D20) * X 4HD2O) * at X x "•- 0.8000 Slit •«- A • Tube

M * w .*. " Hu

•A"

Slit Tube

i A A A AA * • • ••

10 15 20 Path length (mm)

3-20. ^^ slitoj|Ai°|

- 40 - n^ 3-2H afe

Spike noise7l- ^^%t\-. o] <$•&$ rank filter* ^-g-^ OL ^ 3-22S} ^^ ^3?^ ^-^ ^# ^ &4. Rank filter^ <>1^ tt ^3 grey levels ^^ ^€^ grey level^ ^1 a]ffi«M ^-H* W3L «B^ ^€^ grey levl^r a] 51 tHM ^^^ ^€# ^ *V§-*W ^tt ^^°fl Sdfe grey levels cfl sobel filterl- ^-g-S>^. =L& 3-234 ^°1 -fi-^- Sobel filter^ ^^ ^-i^ grey level-i- grey level S] gradients tfl^l^fe filters.^ #3 ^311: ®-^*l ^fetfl A>-g-s]fe filter°l^. A %*}£- ^ > ^°fl ?H1^1- JI^^I^ ¥^ ^ 514^ raw image* ^€

^-i: ^ &;n. olofl rank filter ^ sobel filterl- *>3fl3. ^-g-Sr^ -fi-^

- 41 - 3-21. frame)

3-22. ZL^J 3-21011 rank filter* *{§£!•

- 42 - 3-23. ZL^i 3-22o]| sobel filter!-

- 43 - *\\

BNCT 7}-

Safe

frame 2001^^1 ^«M BNCT 2:A>Aj6j]A]S] HI m

°l-§- ^T1 4^11- ^-§>^ 2001^^1 ?Hl5|-4 image intensifier

film flow

^fl^tb ^-^ ^11- °l-§-§H ^l^ -H-^sl ^41 ^A?V path length^ u*^

matrix 4. HL

- 44 - - 45 - [I] A.H. Robinson and J.P Barton, "High speed motion neutron radiography", Trans. Am. Nucl. Soc, Vol.15, pl40, 1972. [2] J.P Barton et al., "In motion radiography at 10,000 frames per sec", ASNT Spring Conference, Los Angeles, California, 1973. [3] R.H. Bossi, "High speed Motion Neutron radiography", Thesis, Oregon State Univ., 1976. [4] R.H. Bossi et al., "High-speed motion neutron radiography", Nucl. Tech., Vol.59, pp.363-374, 1982. [5] A.H. Robinson and S.L. Wang, "High speed motion neutron radiography of two-phase flow" , Neutron Radiography, J.P. Barton and P. von der Hardt(eds.), pp.653-659, 1983. [6] J.M. Cimbala et al., "Application of neutron radiography for fluid flow visualization", Nucl. Tech., Vol.81, pp.435-445, 1988. [7] J.M. Cimbala et al., "Neutron radiography as a flow visualization tool", Neutron Radiography(3), S. Fujine(eds.), pp.497-504, Kluwer Academic Press, Dordrecht, Holland, 1990. [8] S.S. Glickstein et al., "Void fraction measurements using neutron radio- graphy", Nucl. Sci. & Eng'ng, Vol.121, pp.153-161, 1995. [9] J.T. Lindsay et al., "Real-time neutron radiography application in dynamic fluid flow study", Tran. ANS, Vol.53, pp.181-182, 1986. [10] J.T. Lindsay et al., "Real time neutron radiography and its application to the study of internal combustion engines and fluid flow", J.P Barton(eds-), Neutron Radiography, pp.579-586, 1987. [II] S. Fujine et al., "Study on visualization of fluid phenomena using neutron radiography technique", J.P. Barton(eds.), Neutron Radio- graphy(4), pp.309-316, 1994. [12] N. Takenaka et al., "Application of real-time neutron radiography to multiphase flow visualization and measurement", S. Fujine et al.(eds.), Neutron Radiography(3), pp.505-512, 1990. [13] K. Sonoda et al., "Visualization and volumetric fraction measurement of multiphase flow by neutron radiography", J.P. Barton(eds.), Neutron Radiography(4), pp.347-354, 1994. [14] N. Takenaka et al., "Visualization of streak lines in liquid metal by neutron radiography", J.P. Barton(eds.), Neutron Radiography(4), pp.355-

- 46 - 362, 1994. [15] N. Takenaka et al, "Liquid metal flow measurement by neutron radiography", Nucl. Inst. & Methods in Phy. Re. A, Vol.377, pp.156-160, 1996. [16] M. Ozawa et al., "Void fraction profile in tube-banks of a simulated fluidized- bed heat exchanger", Nucl. Inst. & Methods in Phy. Re. A, Vol.377, pp.144-147, 1996. [17] N. Takenaka et al., "Three-dimensional void fraction measurement of steady two-phase flow by Neutron Radiography", presented at the OECD/CSNI Specialist Meeting on Advanced Instrumentation and Measurement Techniques, Santa Barbara, March 17-20, 1997. [18] Y. Ikeda et al., "Neutron computed tomography with a high-speed image processor", Material Evaluation, Vol.46, pp.1471-1476, 1988. [19] M. Takami et al., "Analysis of two-phase counter flow in heat pipe by neutron radiography", J.P BartonCeds.), Neutron Radiography, pp.609-616, 1987. [20] M. Tamaki et al., "Hydrodynamic behavior of liquid, vapor and non- condensible gas in a closed two-phase flow system", S. Fujine et al.(eds.), Neutron Radiography(3), pp.523-530, 1990. [21] Y. Ikeda et al., "Real-time Neutron radiography for fluid dynamics and molten metals behavior", S. Fujine and et al.Ceds.), Neutron Radio- graphy(3), pp.531-538, 1990. [22] Y. Tsuji et al., "Visualization and correlation analysis of counter-current two-phase flow in a thermosyphon by neutron radiography", Nucl. Inst. & Methods in Phy. Re. A, Vol.377, pp.148-152, 1996. [23] S. Fujine et al., "An on-line video image processing system for real-time neutron radiography", Nucl. Inst. & Methods in Phy. Re. A, Vol.215, pp.277-289, 1983. [24] S. Fujine et al., "Digital processing to improve image quality in real-time neutron radiography", Nucl. Inst. & Methods in Phy. Re. A, Vol.377, pp.148-152, 1996. [25] S. Fujine et al., "Real-time imaging for neutron radiography at KURRI", proceeding of the 1st ASRR, pp.371-380, Rikkyo Univ., Tokyo, Japan, Nov.18-21, 1986. [26] S. Fujine et al., "Visualization on gas-liquid two-phase flow in a narrow rectangular duct", S. Fujine et al.(eds.), Neutron Radiography(3), pp.513-

- 47 - 521, 1990. [27] K. Mishima et al, "Study on two-phase flow in a coolant channel of a plate-type fuel with use of neutron radiography technology", proceeding of the 3rd ASRR, pp.597-603, Hitachi, Ibaraki, Japan, Nov.11-14, 1991. [28] K. Mishima et al, "Visualization and measurement of fluid phenomena using neutron radiography technique, proceedings of the 5th Sym. on Advanced Nuclear Energy Research, pp.788-795, Mito, Japan, Mar.12-13, 1993. [29] K. Mishima et al., "Some characteristics of gas-liquid flow in narrow rectangular ducts", Int. J. Multiphase flow, Vol.19, No.l, pp.115- 124, 1993. [30] K. Mishima et al., "A study of air-water flow in a narrow rectangular duct using image processing technique", the 3rd Japan-U.S. Seminar on Two-Phase Flow Dynamics, Ohtsu, Japan, 1988. [31] T. Hibiki et al., "Application of neutron radiography to visualization and void fraction measurement of air-water two-phase flow in a small diameter tube", J. of Nucl. Sci. & Tech., Vol.30, No.6, pp.516-523, 1993. [32] K. Mishima et al., "Some characteristics of air-water two-phase flow in a small diameter vertical tube", Int. J. Multiphase Flow, Vol.22, No.4, pp.703-712, 1996. [33] T. Hibiki et al., "Visualization of fluid phenomena using a high frame- rate neutron radiography with a steady thermal neutron beam", Nucl. Inst. & Methods in Phy. Re. A, Vol.351, pp.423-436, 1994. [34] T. Hibiki et al., "High frame-rate neutron radiography for visualization and measurement of gas-liquid two-phase flow in a metallic rectangular duct", FED- Vol.209, ASME, pp.243-250, 1995. [35] T. Hibiki et al., "Application of high-frame-rate neutron radiography with a steady thermal neutron beam to two-phase flow measurements in a metallic rectangular duct", Nucl. Tech., Vol.110, pp.422-435, 1995. [36] T. Hibiki and K. Mishima, "Feasibility of high frame-rate neutron radiography by using a steady thermal neutron beam with 10fi n/cm2s flux", Nucl. Inst. & Methods in Phy. Re. A, Vol.369, pp.186-194, 1996. [37] H. Unesaki et al., "Evaluation of scattered neutron component in the thermal neutron radiography image: Influence of scattered and unparallelness of incident neutron beam", Nucl. Inst. & Methods in Phy. Re. A, Vol.413, pp.143- 150, 1998.

- 48 - [38] J.S. Chang et al., "Real-time neutron radiography for visualization of interfacial geometry and phase distribution in two-phase flow", proceedings of NURETH-4, pp.413-417, Karlsruhe, GFR, Oct. 10-13, 1989. [39] W.H. Fairholm et al., "Visualization of two-phase interfaces in a natural circulation loop by a real-time neutron radiography imaging system", ANS proceedings, 1991 National Heat Transfer Conference, pp. 199-206, Minneapolis, Minnesota, July 28-31, 1991. [40] J.S. Chang et al., "Determination of gas-liquid bubble column instan- taneous interfacial area and void fraction by a real-time neutron radiography method", Chem. Eng. Sci. Vol.47, No.13/14, pp3639-3646, 1992. [41] G.D. Harvel et al., "Determination of time-dependent void fraction distribution in bubbly two-phase flow by a real-time neutron radio- graphy technique", Nucl. Tech., Vol.109, pp.132-141, 1995. [42] G.D. Harvel et al., "Cross-sectional void fraction distribution measurements in a vertical annulus two-phase flow by high speed X- ray computed tomography and real-time neutron radiography techniques", proceedings of NURETH-7, NUREG/CP-0142, pp.574-590, Saratoga Springs, NY, Sept. 10-15, 1995. [43] G.D. Harvel et al., "Real-time cross-sectional averaged void fraction measurements in vertical annulus gas-liquid two-phase flow by neutron radiography and X-ray tomography techniques", Nucl. Inst. & Methods in Phy. Re. A, Vol.371, pp.544-552, 1996. [44] G.D. Harvel et al., "Investigation of large amplitude stratified waves in a CANDU-type 37 rod nuclear fuel channel by a real-time neutron radiography technique", NURETH-8, Kyoto, 1997. [45] D.R. Novog et al., "Real time neutron radiography of boiling refrigerant 134a under smooth and swirl flow conditions", ExHFT 4, 1997. [46] G.D. Harvel et al., "A real-time neutron radiography diagnostic of a vertical co-current two-phase flow channel with a hexagonal finned bundle", ExHFT 4, 1997. [47] H.J. Kim et al., 1990, "Neutron radiography application in Korea," Fujine, S.(eds.), Neutron Radiography(3), pp.549-556, Kluwer Academic Press., Holland. [48] H.J. et al., "The Neutron Radiography Programme at KAERI", preceeding

- 49 - of FENDT '97, pp.295-303, Cheju-do, Korea, Oct. 8-11, 1997.

[49] ^S]-§:, "f^*} 4tl^=L?\z\ <8#*13 Al^Efl 7^"t KAERI/CM-274/98. [50] K.H. Bang, "Boiling and two-phase flow in narrow space and future application of neutron radiography," proceedings of the 5th ASRR, pp. 519-524, May 29-31, 1996, Taejon, Korea. [51] S.Y. Lee and et al., "COBRA/RELAP5: A merged version of the COBRA-TF and RELAP5/MOD3 codes," Nucl. Tech, Vol.99, pp.177-187, 1992. [52] °}^% "BNCT collimator «BHH^ ^A^W, ^f-^, HAN-RR-CR- 490-00- 093, 2000. [53] ^^1 3 21^, "<2^S <>]•%• 7]# 7fl^: s>i43.t- *]•%•$: # *l£. #*1 ?U W, ^.^^ <£^ S.^-^, KAERI/RR-2018/99, 2000. [54] L.E. Bryant, "Nondestructive Testing Handbook, Vol.3", ASNT, 1985.

[55] ^-§-^, <5j^ 1995_ [56] W.E. Dance and S.F. Carollo, "High sensitivity electronic imaging system for reactor or non-reactor neutron radiography", Neutron Radiography, 2, 415-422, 1986. [57] SJ. Lee, "PIV Velocity Field Measurement", 3L*8~§-tfl ^^-fi-^l?^ ^^^1

El *tn<$. H^ ^7}^s}} 99-09. [58] H. Nakamura et al., "High-frame-rate video visualization of simulated lower head behavior during TMI accident using neutron radiography", 5th World Conference on Neutron Radiography, Berlin, June 17-20, 1996. [59] P. Von D. Hardt and H. Rottger, "Neutron radiography handbook", D. Reidel Pub. Co., 1981. [60] Y. Suzuki et al., "Development of imaging converter", S. Fujine et al. (eds.), Neutron Radiography(3), pp.277-279, 1990. [61] J. S. Brenizer et al., "Performance characteristics of scintillators for use in an electronic neutron imaging system for neutron radiography", Rev. Sci. Instrum., Vol.68, No.9, pp.3371-3379, 1997. [62] ^S-^4^!^, "A1*]^*H: sj-q-s. NR scintillator", 00-09-27. [63] NE Technology Services, NE Technology America, Monmouth Junction, New Jersey, 1989. [64] W. Low and M Schieber, "Applied Solid State Physics", Chap.4, p.115, Plenum, New York, 1970. [65] tf7]-g-, "L/D #^ £4," tfl-r-f-^, HAN-NP-NR-NKY-MEMO-1121, 00-11-21.

- 50 - [66] J. F. Briesmeister (Editor), "MCNP-A general Monte Carlo N-Particle Transport Code," LA-12625-M, Los Alamos National Lab., 1993.

- 51 - XI

INIS

KAERI/RR-2094/2000

NR

2001. 1.

2)1 o] xl 53 p. 3. 7] I 0,7 cm.

), _ ^

BNCT image intensifierl- n} BNCT

BNCT, BIBLIOGRAPHIC INFORMATION SHEET

Performing Org. Sponsoring Org. Stamdard Report No. INIS Subject Code Report No. Report No.

KAERI/RR-2094/2000

Title / Subtitle Study on the characterization of the neutron radiography facility in HANARO for two-phase flow research

Project Manager I.C. Lim(HANARO Operation Div.) and Department Researcher and C.G. Seo(HANARO Operation Div.), Department J.H. Jeong(HANARO Util. Tech. Dev. Div.), B.H. Lee(HANARO Operation Div.), Y.S. Choi(HANARO Operation Div.)

Publication Publication! Daejon Publisher KAERI 2001. 1 Place Date Page 53 p. 111. & Tab. Yes( O ), No ( ) Size 0.7 cm Note Classified Open( O ), Restricted( Report Type Class Document Sponsoring Org. ! Contract No. Abstract (15-20 Lines)

For the application of dynamic neutron radiography to the two-phase flow research using HANARO, several experimental items to which the radiography technique is beneficial were identified through the review of the outputs from the related researches and the discussions with experts. Also, the investigation of the equipments including the beam port, camera and converter was made and aj hardware and a software for image processing were equipped. j It was confirmed that the calibration curve for the attenuation of neutron beam in fluid! which is required for the two-phase flow experiment could be obtained by the computer code! calculation. j Based on the investigation results on the equipment and the results from the measurement; of BNCT beam characteristics, a high speed camera and an image intensifier will bej purchased. Then, the high speed dynamic neutron radiography facility for two-phase flow experiments will be fully equipped. Subject Keywords high speed dynamic neutron radiography, two-phase flow, camera, (About 10 words) converter, calibration curve, BNCT