Lake and river ice cover Frozen wetlands

A.V. Kouraev, E.A. Zakharova, F. Rémy

University of Toulouse, France LEGOS, Toulouse France State Oceanography Institute STUDY AREAS

Ladoga Lake Onega Lake 30° E Five largest 60° N Baikal Lake Eurasian water 120° E bodies Aral Sea Caspian Sea 45° N Salt / fresh water

Seasonal ice cover - forming every year Full / partial ice coverage depending on winter severity

Surface, km2 Volume, km3 Max depth, m Mean depth, m Comment Caspian Sea 371000 78200 1025 211 World's largest inland water body Baikal Lake 31500 23600 1637 749 Deepest lake in the world, 2nd largest in Eur Ladoga Lake 18130 908 230 50 4th largest in Eurasia Onega Lake 9891 280 120 28 5th largest in Eurasia Aral Sea 1960 67000 1083 63 16 Aral Sea 2004 16000 100 40 6 Good indicator of Ice and snow for people large-scale climate change and nature Formation of hydrophysical fields Influence on spring bloom 160 )

s of diatoms y

140 a d (

n

o and primary production i

120 t a ) r r u p d

A

100 r 1 e

t e n

i 60 c n W 80 i Living s

s

y 40 ) a c d ( e conditions for

D p

u

1 20 -

k e a 60 c endemic e n i r s B

s

40 y a animals d (

p

20 u - e

z Year (Winter start) e e r F 1860 1880 1900 1920 1940 1960 1980 2000

Baikal ice phenology and winter duration - Listvyanka station (since 1868) Opening of ice route to Ol’khon island, 11 of ice island, route Opening to Ol’khon Practical aspects - February, 2004

Fishermen, Barguzinbay, 2013 tourism transport on ice, fishing, on transport

TouristsBaikal ice on

(Photo by Andrei Suknev) Combination of simultaneous Altimetry method active (altimeter) and passive (radiometer) microwave data a) Caspian and b) Baikal, Ladoga Aral seas and Onega lakes

290 Number of observations Ice / water 270

K 100

discrimination , 250 2

/ 50

) F

7 E 40 methodology: 3 230 F B D 30 T D

+ E developed, validated 210 20 8

1 10

and tested B 5 T 190 C C for seas and lakes ( B B 2 170 1 0 150 A A Kouraev et al., 0 10 20 30 40 0 10 20 30 40 2003 Polar Research Backscatter, dB Backscatter, dB 2004 JMS 2004 IEEE TGRS Schematic representation of the temporal evolution of T/P 2007 RSE observations in the space of backscatter vs. TB/2. Schema is 2007 L&O overlaid on two-dimensional histograms (total summed 2008 SiG values) for Caspian and Aral seas (a) and Baikal, Ladoga and Onega Lakes (b) Combining benefits of the two Mapping approach platforms

Working at 5 days resolution (pentads)

Freezing of the Ladoga Lake - a sequence of four pentads during winter 2002/03 SSM/I - wide spatial coverage, high temporal resolution Altimetry - high radiometric and along-track spatial resolution

Resulting time series of ice events e g a n r

ICE EVENTS DURATION, DAYS o

- n r e Shorter winters - s t 160 a E

,

n 140 e e r

g but not everywhere!

- 120

n r e 200 t 100 e s W d

: e 80 Caspian sea - constant r n

- a l p i a r 160 s 60 a A

gradual warming C r n n e r h e t r h t o r o

N 120

, N e u l Aral sea - cooling followed b - l a r 80 A

by warming n r e t a s n E e -

40 e h r t g u

- o Ladoga and Onega - very i t S l A

a 0 g 160 similar, recent warming d o a L

140 , d e r -

120 W

M Baikal - warming in the north, ) 100 P

B a N g

- o

80 d e but cooling in the u l 200 L a

, B

e , 60 u B l

180 b M

- center and south -

n g a e

160 e e r n G O

, 140 B S

-

d 120 Some winters are typical e R (

L 100

A (cold 1993/94) but mostly K I 8 0 2 4 4 6 6 8 8 0 0 2 2 4 6 A 7 8 8 9 8 9 8 9 8 0 9 0 9 0 0 B 9 9 9 9 9 9 9 9 9 0 9 0 9 0 0 1 1 1 1 1 1 1 1 1 2 1 2 1 2 2 regional character 2010 2011 2012 2013

CNES TOSCA, ANR CLASSIQUE, FP7 Monarch-A, CNRS PICS BaLaLaICA 1

Average in situ (2001-2011) and altimeter- ) n o derived (2002-2011) values of ice formation i 0.96 t c

and break-up along the main ' river channel a f r

between Salekhard and Novosibirsk r a e ( Y

0.92 4000 n o

A B C t i m a ) r n o B

0.88 f o s

3000 d

i

1 t a d e

t 0.38 c c e n I a , 0 . ) 5 p f r e r r

0.36 o r f a c k e r a 2000 t e a g e

r 0.34 0.84 e r 2 ( Y a v I c e

( g

0 20 p 0.32 a v i n m o - u K i g m k , °

1000 S

s ) 0.3 a

d 10 e a t r n e b p 0.28

0 e e , 5 c g

0 I a r Distance from Ob' mouth (km) e

a v -10 g v i n o m ( -20 0 500 1000 1500 2000 2500 3000 B T d Location of in situ stations -30 0 0.2 0.4 0.6 0.8 1 i i t t e e e e k e k e o o o o o d o o o Time (fraction of the year) d k k u u r r y y y y y y v o v v v o v v n n r r i r i r a a g g o o o o s e s e o o o o o o r r o o h h k k k k a a k h k h n n m m i G i G g k g k s s g l s g l s a a ' s ' s S u S u r e r e t o o t o o v v a a r r g g h h l l l Temporal (seasonal) variability of ENVISAT backscatter l a a o o p p b b c c u a u a e e l l r r l l r r K S y K S y a a S S B B o o d d o o K (Ice2 retracker) and dTB (TB365-TB238) values (moving K t y t y n n K K M M k k a a s s O average) for virtual stations in the Zone 1 (Salekhard) O k k e e l l A A 96 ENVISAT Timing: 6 dates virtual stations (2002-2011) First ice / Ice with polynyas / Ice 100% Ice with polynyas / Beginning of ice break-up / Open water “Three Rings for the Elven-kings under the sky, Seven for the Dwarf-lords in their halls of stone, Nine for Mortal Men doomed to die, One for the Dark Lord on his dark throne, and many more rings - hidden in the dark and thin ice of the Lake Baikal…” (J.R.R. Tolkien, updated) Krestovskiy Cape Baikal Ice Rings Nizhnee Izgolovye Cape

1999 04 18 2003 04 20 2005 04 24 2008 04 22 Radius about 2.3 - 2.9 km

Southern Baikal 2009 04 15

NizhneeNizhnee IzgolovyeIzgolovyeIzgolovye Ol'khonskiyeOl'khonskiye VorotaVorota CapeCape StraitStrait 2009 04 24 2009 04 20 SPOT 2009 04 25 ISS TurkaTurka settl.settl. Radius about 2.8 km 15001500 mm KrestovskiyKrestovskiy CapeCape 10001000 mm Turka region 500500 mm

KadilniyKadilniy CapeCape 500500 mm AngaraAngara riverriverriver SelengaSelenga riverriver

2009 04 24 10001000 mm Radius about 2.1 km 2008 04 22 Radius about 1.9 km Rings are usually seen in April (no snow). But they could be Formation time/duration formed earlier! By 15 January ice cover was stable

By 1 February the ring can already be guessed through snow

19-20 April - central part is broken in two 04 01 2009 08 01 2009 10 01 2009 13 01 2009 15 01 2009

31 01 2009 01 02 2009 02 02 2009 15 02 2009 19 02 2009 01 03 2009 12 03 2009 28 03 2009

04 04 2009 06 04 2009 09 04 2009 20 04 2009 24 04 2009 27 04 2009 29 04 2009 03 05 2009 This ring has been formed between 15 January and 1 February 2009 Real timing of rings formation - ? 04 05 2009 06 05 2009 How much time is needed to form (sustain?) a ring? Nizhnee Izgolovye Cape - Landsat ETM+

Near infrared (Band 40) Thermal infrared (Band 62) 30 March 2009 Center/outside: -5.6 .. -6.8°C

Ring: -4.9.. -5.7°C

15 April 2009 Center/outside: -2 .. -2.4°C

Ring: +0.74.. --1.35°C

Ring is 1°C warmer Ice ring in 2012

CTD casts, 5-7 April 2012

Seal’s breathing hole: above and below

Gotcha! MODIS 21 April 2012 Wetlands Western Siberian wetlands Western : an unique region

Ob’ + + PNPT : 1250 km3 /year (greatest input among all other Arctic seas)

Flat relief - multitude of natural objects (large 90°90° EE 70°70° EE 90°90° EE Yenisey and small rivers and streams, extensive M i d d l e SalekhardSalekhard floodplains, lakes, mires, etc). Nadym Ob' Poluy TazTaz S i b e r i a n Poluy, Nadym, Pur and Taz 75° E 85° E UralUralUral MountainsMountainsMountains Siberian Ridge 70° N KARAKARA SEASEA Dudinka

estuaryestuaryestuary estuaryestuaryestuary YeniseyYeniseyYenisey estuaryestuaryestuary YeniseyYeniseyYenisey (PNPT) estuaryestuaryestuary TazTaz Ob' Khanty-MansiyskKhanty-Mansiysk Ob'Ob'Ob' Taz Khanty-MansiyskKhanty-Mansiysk Salekhard MOUNTAINSMOUNTAINSMOUNTAINS Salekhard MOUNTAINSMOUNTAINSMOUNTAINS Salekhard MOUNTAINSMOUNTAINSMOUNTAINS Pur Samburg Nizhnyaya H i g h l a Sidorovsk Poluy Nadym Tunguska 60°60° NN Poluy 60°60° NN Nadym URALURALURAL Nadym Urengoy URALURALURAL Nadym Urengoy TuruhanskTuruhansk Homogeneous URALURALURAL Urengoy TuruhanskTuruhansk Ob' 65° N Ob' Ob' YeniseyYeniseyYenisey Berezovo YeniseyYeniseyYenisey IrtyshIrtyshIrtysh Vasyugan conditions, good Berezovo

PodkamennayaPodkamennaya TunguskaTunguska climate indicator SIBIRSKIYE UVALY HILLS Ob'

URALURALURAL MOUNTAINS MOUNTAINS MOUNTAINS URALURALURAL MOUNTAINS MOUNTAINS MOUNTAINS Khanty-Mansiysk Ob' TomskTomsk IrtyshIrtysh KuznetskKuznetskKuznetsk Ala-TauAla-TauAla-Tau

TobolTobol Vasyugan bog 150150 kmkm World's largest IshimIshimIshim Permafrost type Continuous permafrost peatland (6.78 million ha). Altay Mountains Discontinuous permafrost 50°50° NN Zone of constant seasonal soil freezing Appeared 10 000 years ago IrtyshIrtyshIrtysh Ob' w atershed Kazakh Melkosopochnik and constantly growing. 75% Ob' inner w atershed of the actual surface Great Vasyugan Bog appeared during the last 500 years. Influence of permafrost. Active layer depth in tundra 20-25 cm N to 80-90 cm S, taiga - Permafrost conditions up to 2m.

Carbon cycle Permafrost types of Russian Federation (after K.A.Kondratyev and V.A.Kudryavtsev classification) 3 4 5 6 7 8 9 YeniseyYenisey 10 11 12 14 ZapolyarniyZapolyarniy NoviyNoviy UrengoyUrengoy PangodyPangody Ob' Nadym TazTaz PurPur Difficult to measure with satellites Ob' Khanty-MansiyskKhanty-Mansiysk Field trip 2010

Type Percent of Average temperature, deg Depth of permafrost, m coverage , Celcius IrtyshIrtyshIrtysh VasyuganVasyugan % Continuous permafrost 3 100 less than -13 M >800 m Ob' Ob' 4 100 -11 to -13 M 500-700 m TomskTomsk 5 100 -9 to -11 M 400-600 m, in mountain ridges 1000 m or more 6 100 -7 to -9 M 300-500 m, in mountain ridges up to 500_900 m 7 100 -5 to -7 M 200-400 m, in mountain ridges 300-500 8 100 -3 to -5 M 200-400 m, 9 100 -1 to -3 M 100-300 m Discontinuous permafrost 10 70-80 0 to -2, thaw soils - +1 to 0 M up to 100 m, rarely 200-300 m 11 40-60 0 to -1, thaw soils - +2 to 0 M 50-70 m, rarely 100-200 m 12 5-10 0 to -0.5, thaw soils +2 to 0 M 15-20 m, rarely up to 50 m Zones of constant seasonal freezing of soils 14 up to 5% 0 to -0.5 M up to 10-20 m

Note the depth: several hundreds of meters !

What do we see from backscatter in Siberia? Wet zones: one- and two-humped came

Using ENVISAT data we estimate the extent (%) Flood_type 1 of wet zones within 21 mid-size watershed of the 77 1,1 Ob’ river system. Basing on the difference in 2 3 66 11 33 seasonal signal we grouped the watersheds into 55 33 the 3 main types (and one subtype) 1616 88 1010 1111 44 99 1010 1111 22

Vasyugan R. 10 0 1717 1717 1212 1515 1212 Type 1: Small permanent 80 1818 1515 60 1313 1414 1313 flooding (one peak) and well 40 1414 1919 20 pronounced draining 0 0 1 2 3 4 5 6 7 8 9 10 11 12 month 2020

Tym R. 10 0 2121 Type 1a: Same as 1 but with two 80 60 peaks 40 20

0 0 1 2 3 4 5 6 7 8 9 10 11 12 mo nth No River name 11 Pim 1 Taz Tromyugan R. 12 Tym Type 2: High permanent 10 0 2 80 13 Ket 60 3 Pur flooding with insignificant 40 14 Vasyugan 4 Trom Yugan 20 15 Big Yugan draining 0 0 1 2 3 4 5 6 7 8 9 10 11 12 5 Nadym mo nth 16 Severnaya Sosva 6 Poluy 17 Konda 7 Schuchya 10 0 P ur R. 18 Tavda Type 3: Medium permanent 80 8 Kazym 19 Tura 60 9 Nazym flooding with two peaks 40 20 Om 20 10 Lyamin 21 Inner watershed and well pronounced draining 0 0 1 2 3 4 5 6 7 8 9 10 11 12 month Wet zones: timing of seasonal variations

Beginning Beginning 77 77 of freeze-up of flood 66 66 11 11 33 33 55 55 33

1616 88 1616 88

1010 1111 44 1010 1111 44 99 99 1010 1111 22 22

1717 1717 1212 1717 1515 1212 1515 1212 1818 1818 1515

1313 1313 1414 1414 1919 1919

2020 Flood start 2020 Mid Marc h End of March Freeze start 2121 Beginning of April 2121 Mid April Beginning of October End of April Mid October Beginning of May Beginning of November

Maximal 77 77 Full freeze -up flood 66 66 11 11 33 33 55 33 55 33

1616 88 Generally N to 1616 88

1010 1111 44 1010 1111 44 99 1010 1111 99 1010 1111 22 22 S, but some

1717 1717 1515 1212 1515 1212 1818 1515 1818 1515 specific 1313 1313 1414 1313 1414 1313 1414 1414 1919 1919 orographic/drai

2020 nage features 2020 Maximal flood Mid April Full freeze 2121 2121 Beginning of May Mid November Mid May End of November End of May Beginning of December Beginning of June Mid December End of December Freeze/Thaw of bogs and lakes

Thaw Freeze ENVISAT (dots)

) 100 % z o ( 80 SMOS (lines) i t Pur a T a r

d 60 s n a n e 40 o u r Taz z P t

20 C e °

, 20 W 0 y g o d

n 0 a

P Météo in situ e 100 r ) t u -20 a % m r

80 e o ( p i a d y t Nadym a N r 60 -40 T e m s n d n e a 40

o Poluy 40 z t , m o l u y e 20 30 P W 0 20

i p t a o n 10 c e r

P 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 l t r r v c y n b n 1 1 1 1 1 1 1 1 1 1 1 1 1 u a p ------o e a u g e p u e a l r r c v y - J y J g p n n n M F - O c M - A c t u - - J a p - A - S - N - D 5 - e o a a u e a 3 6 J 7 - 5 - 1 O A - J u J a J 1 1 1 5 1 6 M D N A S 1 1 1 4 1 3 1 2 1 2 - M M - 1 6 ------0 - - 8 1 0 1 1 2 7 7 9 8 3 1 1 2 3 3 2 2 2 2 3 Time

AltiKa-AltiKu-AltiS Winter 2012/2013 - a lot of snow Ice dynamics in real time

A secondary ice fracture (formed 10 min ago) Width - 6 cm, ice thickness 110 cm, level difference - 2 cm

Larger expansion crack, hummocks 50-60 cm high

Smooth, mostly clear ice

Rough, hummocky (1 cm thick), snow Snow, small patches of clear ice Smooth; congelated pancake ice

Snow-covered ice

Snow, small patches of clear ice

Double-layered ice 466, cycle 1, 30 March 13 466, cycle 2, 4 May 13 466, cycle 3, 8 June 13 621, cycle 1, 4 April 13 621, cycle 2 9 May 13

???

Ice thinning methamorphism structure Ice structure Air channels

Air channels formation in 9 min Influence on albedo! Needle ice

1800 km Western Siberian wetlands

1500 km ALTIKA over wetlands AltiKa waveforms cycle 2, snowy track 51 cycle 1, snowy

cycle 3, melting

Water/ice dominated footprints - specular waveforms

possibility of freeze/wetness/level studies ALTIKA - ENVISAT over snowy/icy wetlands ENVISAT, February ALTIKA, April Ka Ku

Wet zones Wet A B

S Wet zones Ka

B N Wet zones Wet

A S ALTIKA - ENVISAT over snowy/icy wetlands Backscatter, dB transect of 13 km

June

63.84°N

April cy1 cy2 ALTIKA

ENVISAT * ENVISAT april cycles before 2008

Distance between ENVI-Altika tracks = 2,5 km ALTIKA - ENVISAT over wetlands April to June It is not a noise - these are bogs/lakes

Elevation, m

Dry hills ALTIKA over

Kara Sea

Ob R. Ob R. estuary

NASA MODIS project gallery ALTIKA over Kara Sea : waveformes cycle 1, ice Sea Land Sea Sea cycle 2, ice cycle 3, melting Sea Sea N Land Land Sea Sea S Sea Sea ALTIKA over Kara Sea : waveformes Cycle 2, 1 May Cycle 3, 7 June ALTIKA over Kara Sea: Sigma and Height Cycle 3, 7 June Landsat 8 June 2013

water

zoom

water water Fast ice ice ice water water ice ice ice

For height, no geophysical corrections ALTIKA over Kara Sea: Sigma and Height

2 days timelag

Very dynamic ice fields: difficult to accurately validate the ice extent ~Ice edge ~Ice edge

Landsat 8 ALTIKA - ENVISAT over estuary and Kara sea

Land Land Estuary wetlands river valleys Kara Sea

ENVISAT 2007 ENVISAT