Raman Fingerprints of Graphene Produced by Anodic Electrochemical Exfoliation

Total Page:16

File Type:pdf, Size:1020Kb

Raman Fingerprints of Graphene Produced by Anodic Electrochemical Exfoliation The University of Manchester Research Raman Fingerprints of Graphene Produced by Anodic Electrochemical Exfoliation DOI: 10.1021/acs.nanolett.0c00332 Document Version Accepted author manuscript Link to publication record in Manchester Research Explorer Citation for published version (APA): Nagyte, V., Kelly, D. J., Felten, A., Picardi, G., Shin, Y., Alieva, A., Worsley, R. E., Parvez, K., Dehm, S., Krupke, R., Haigh, S. J., Oikonomou, A., Pollard, A. J., & Casiraghi, C. (2020). Raman Fingerprints of Graphene Produced by Anodic Electrochemical Exfoliation. Nano Letters. https://doi.org/10.1021/acs.nanolett.0c00332 Published in: Nano Letters Citing this paper Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version. General rights Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Takedown policy If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown Procedures [http://man.ac.uk/04Y6Bo] or contact [email protected] providing relevant details, so we can investigate your claim. Download date:08. Oct. 2021 Raman Fingerprints of Graphene Produced by Anodic Electrochemical Exfoliation Vaiva Nagyte1, Daniel J. Kelly2, Alexandre Felten3, Gennaro Picardi1, YuYoung Shin1, Adriana Alieva1, Robyn E. Worsley1, Khaled Parvez1, Simone Dehm4, Ralph Krupke4,5, Sarah J. Haigh2, Antonios Oikonomou6,7, Andrew J. Pollard8, Cinzia Casiraghi*1 1 Department of Chemistry, University of Manchester, Manchester M13 9PL, UK. 2 Department of Materials, University of Manchester, Manchester M13 9PL, UK. 3 Synthesis, Irradiation and Analysis of Materials (SIAM), University of Namur, Belgium 4 Institute of Nanotechnology, Karlsruhe Institute of Technology, Karlsruhe 76021, Germany 5 Department of Materials and Earth Sciences, Technische Universität Darmstadt, Darmstadt 64287, Germany 6 National Graphene Institute, University of Manchester, Manchester M13 9PL, UK. 7 The Institute of Photonic Sciences, Castelldefels 08860, Spain 8 National Physical Laboratory, Teddington, Middlesex, TW11 0LW, UK *E-mail:[email protected] Electrochemical exfoliation is one of the most promising methods for scalable production of graphene. However, limited understanding of its Raman spectrum as well as lack of measurement standards for graphene strongly limit its industrial applications. In this work we show a systematic study of the Raman spectrum of electrochemically exfoliated gra- phene, produced using different electrolytes and different types of solvents in varying amounts. We demonstrate that no information on the thickness can be extracted from the shape of the 2D peak as this type of graphene is defective. Furthermore, the number of defects and the uniformity of the samples strongly depend on the experimental conditions, including post-processing. Under specific conditions, formation of short conductive trans-polyacetylene chains has been observed. Our Raman analysis provides guidance for the community on how to get information on defects coming from electrolyte, temperature and other experimental conditions, by making Raman spectroscopy a powerful metrology tool. KEYWORDS: graphene, Raman spectroscopy, electrochemical exfoliation, X-ray photoelectron spec- troscopy, Atomic force microscopy, Transmission electron microscopy. 1 Graphene, the first discovered 2-dimensional (2d) material, is attracting strong research interest because of its outstanding properties, which can be exploited in a wide range of applications.1 One of the most used techniques for large scale production of graphene is based on solvent assisted exfoliation,2–5 which allows preparation of 2d crystal dispersions. In particular, the most common techniques are liquid-phase exfoliation (LPE)6 and electrochemical exfoliation (ECE).7 Although both LPE and ECE offer a simple, low cost and scalable way to produce graphene, commercialization of graphene-based products is still limited due to the lack of metrology standards.8–13 In order to overcome this problem, the community has introduced some guidelines to establish universal practices to allow a better classification of solu- tion-processed 2d materials, based on specific parameters, such as thickness, size and surface chemis- try.10,11 However, characterization of such materials is currently very challenging because dispersions typically contain nanosheets with a wide distribution in size and thickness, in contrast to traditional col- loidal dispersions. Moreover, such distributions strongly depend on the exfoliation method and parame- ters used.9 Raman spectroscopy is a simple, low cost and widely used technique for the characterization of gra- phene.14–16 The Raman spectrum of graphene is composed of two main features, the G and the 2D peaks, which lie at ~1580 cm-1 and ~2700 cm-1, respectively.17 The full width at half maximum of the 2D peak (FWHM(2D)) of 25 - 30 cm-1 is typically used to identify a single-layer of graphene.17 Howev- er, graphene produced by different methods can show very different Raman spectra: in the case of solu- tion-processed graphene, the Raman analysis has to take into account other factors that can alter the Raman spectrum, such as the interaction with the solvent, the reduced flake size (e.g. effect of edges), defect formation, and the random re-stacking (i.e. loss of AB stacking of the starting graphite) of the flakes. These effects give rise to strong changes in the Raman spectrum, as compared to that measured on graphene produced by micro-mechanical exfoliation (MME).17,18 For example, graphene produced 2 by LPE typically has FWHM(2D) above 50 cm-1 6,19–23 in contrast to ~25 cm-1 for MME graphene17. Furthermore, the D peak at ~1350 cm-1, is also observed in graphene produced by LPE.6,19–23 In our group we have developed a simple protocol for qualitatively assessing the thickness distribution of graphene dispersions produced by LPE.20–23 Nevertheless, the Raman characterization of ECE gra- phene has been rather limited: transmission electron microscopy (TEM) and atomic force microscopy (AFM) are typically used to analyze the graphene flake’s morphology,24 while the chemical composition and crystal structure are typically evaluated by X-ray photoelectron spectroscopy (XPS) and X-ray powder diffraction (XRD).25,26 It was observed that there is a correlation between XPS analysis on oxy- gen-containing groups, layer spacing from XRD data and the D and G peak intensity ratio (I(D)/I(G)).27,28 Thus, I(D)/I(G) has been proposed as a parameter to define the quality of ECE graphene and optimal ECE process conditions.29 However, it is known that this ratio does not depend linearly on defect density,30–32 and it changes with the excitation energy.31 Thus, inaccurate conclusions could be derived by analyzing I(D)/I(G) only or by comparing I(D)/I(G) measured in different works using dif- ferent laser excitations. Indeed, it was already observed that graphene samples having similar C/O ratios can have rather different I(D)/I(G) values in some cases.33 Furthermore, XPS and XRD are bulk charac- terization techniques, while Raman spectroscopy can easily probe individual graphene sheets as the typ- ical flake size is well above the laser spot size (~500 nm). Most of the research on characterization of ECE graphene34–37 reports Raman spectra of a few selected flakes, which may not be representative of the dispersion – a statistical analysis is needed.9 Moreover, the Raman spectrum of an ECE graphene flake is compared with that of graphite to show successful exfoliation of graphene,38,39 but no further analysis of the Raman features is performed. Only Wang et al.40 presented Raman spectroscopy results combined with optical contrast analysis to evaluate the statistical distribution of the graphene sheet thickness. However, the optical contrast may vary depending on the degree of functionalization of gra- phene and intercalation stage. 3 In this work we show a systematic Raman spectroscopy analysis of graphene produced by ECE under different conditions. We show that the Raman analysis developed for LPE graphene cannot be applied to graphene obtained by ECE. In particular, the thickness of graphene produced by anodic ECE cannot be extracted by Raman spectroscopy. We propose a detailed approach to characterize ECE graphene, which allows qualitative determination of the level of defects in ECE flakes and the uniformity of the material. Furthermore, we show that the properties of such graphene are strongly sensitive to post- processing, further highlighting the importance of characterizing the material during every step of pro- duction, which is the key to enable batch to batch reproducibility and industrial uptake. RESULTS AND DISCUSSION To evaluate the influence of the electrolyte and the solvent on ECE graphene properties, 12 samples were prepared under different conditions (Table 1 and Figure S2.1). Note that each sample was repeated at least twice to ensure reproducible results (Section S7.4). Graphite electrodes were first electrochemi- cally exfoliated (See Methods in Section S1) using different electrolytes:
Recommended publications
  • Supplementary Information
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Apollo Supplementary Information Raman Fingerprints of Atomically Precise Graphene Nanoribbons I. A. Verzhbitskiy,1,† Marzio De Corato,2, 3 Alice Ruini,2, 3 Elisa Molinari,2, 3Akimitsu Narita,4 Yunbin Hu,4 Matthias Georg Schwab,4, ‡ M. Bruna,5 D. Yoon, 5 S. Milana,5 Xinliang Feng,6 Klaus Müllen,4 Andrea C. Ferrari, 5 Cinzia Casiraghi,1, 7,* and Deborah Prezzi3,* 1Physics Department, Free University Berlin, Germany 2 Dept. of Physics, Mathematics, and Informatics, University of Modena and Reggio Emilia, Modena, Italy 3 Nanoscience Institute of CNR, S3 Center, Modena, Italy 4 Max Planck Institute for Polymer Research, Mainz, Germany 5 Cambridge Graphene Centre, University of Cambridge, Cambridge, CB3 OFA, UK 6 Center for Advancing Electronics Dresden (cfaed) & Department of Chemistry and Food Chemistry, Technische Universitaet Dresden, Germany 7 School of Chemistry, University of Manchester, UK † Present address: Physics Department, National University of Singapore, 117542, Singapore ‡ Present address: BASF SE, Carl-Bosch-Straße 38, 67056 Ludwigshafen, Germany * Corresponding authors: (DP) [email protected]; (CC) [email protected] Table of Contents S1. Laser power effects S2. Multi-wavelength Raman spectroscopy of GNRs vs defective graphene S3. Zone-folding approximation for cove-shaped GNRs. S4. D- and G-peak dispersions from DFPT. S5. Simulated Raman spectra for cove-shaped GNRs: chirality and chain effects. S1. Laser power effects The Raman spectra of GNRs are sensitive to the laser power, especially for the m-ANR. For the latter, the D peak strongly changes its shape with increasing laser power (non-reversible trend), so very low laser powers (<< 0.5 mW) need to be used to avoid sample damage.
    [Show full text]
  • Ncem-1, 2, 3, 4 & 5 Members
    Nano-Carbon Enhanced Materials (NCEM) Consortium The 1st Nano-Carbon Enhanced Materials (NCEM-1) consortium has been launched in April 2012 by the Centre for Business Innovation Ltd (www.cfbi.com) in order to provide the consortium members a unique insight into nano-carbon materials such as graphene and carbon nanotubes, facilitate the commercial uptake and bring together potential users with a shared interest to address commercialisation challenges. The consortium leader Dr Bojan Boskovic, from Cambridge Nanomaterials Technology Ltd (www.cnt-ltd.co.uk), is an expert in nano-carbon commercialisation. After five years and five successful NCEM consortium series (NCEM-1, NCEM-2, NCEM-3, NCEM-4 and NCEM-5, with total of 25 meetings in Europe and USA the NCEM consortium is now in the 6th year (NCEM-6). The NCEM-6 consortium starts in March 2017 and it is open for new members. The NCEM consortium provides an opportunity to engage with leading companies in the supply chain and also with leading world class experts in a commercialisation pathfinder programme for a small fraction of time and total costs of alternatives such as consultancy, meetings, workshops and conferences. It could be used to develop nano-carbon commercialisation strategy through an active technology watch programme with a unique insight into state-of-the art of carbon nanotechnologies and key player strategies and also to secure IP and develop nano-carbon technologies through participations in collaborative R&D programmes and direct commercialisation partnerships with the NCEM members and presenting organisations. The use of nano-carbon materials, such as carbon nanotubes and graphene is a rapidly evolving field and this is an opportunity to influence where and how fast it goes, and to facilitate the commercialisation.
    [Show full text]
  • Chem2dmat 2019 Abstract Book
    foreword On behalf of the Organising and the International Scientific Committees we take great pleasure in welcoming you to Dresden (Germany) for the 2nd edition of the European Conference on Chemistry of Two-Dimensional Materials (chem2Dmat2019). During the last years, the chemistry of graphene has played an ever-increasing role in the large-scale production, chemical functionalization and processing as well as in numerous applications of such material, and it has been expanded to various new 2D inorganic and organic materials. This conference aims at providing a forum to the rapidly growing community of scientists mastering the chemical approaches to 2D materials in order to fabricate systems and devices exhibiting tunable performance. The chemical approach offers absolute control over the structure of 2D materials at the atomic- or molecular-level and will thus serve as enabling strategy to develop unprecedented multifunctional systems, of different complexity, featuring exceptional physical or chemical properties with full control over the correlation between structure and function. The 2nd edition of chem2Dmat will cover all areas related to 2D materials' chemistry spanning their synthesis as well as their functionalization, using covalent and non-covalent approaches, for composites, foams and coatings, membranes, (bio-)sensing, (electro- and photo-)catalysis, energy conversion, harvesting & storage, electronics, nanomedicine and biomaterials. chem2Dmat2019 Highlights: • Expected attendance: 200 participants • 34 Keynotes & Invited Speakers • 60 posters • Nearly 65 oral contributions • 1/2-day Industrial Forum in parallel to get an updated understanding of Graphene based technologies • 5 awards to PhD students chem2Dmat2019 is now an established event, attracting global participant’s intent on sharing, exchanging and exploring new avenues of graphene-related scientific and commercial developments.
    [Show full text]
  • NSF US-EU Workshop on 2D Layered Materials and Devices
    NSF US-EU Workshop on 2D Layered Materials and Devices April 22-24, 2015, Arlington, VA, USA Workshop Final Report Submitted to the NSF by: Anupama Kaul, University of Texas, El Paso, TX, U.S.A. James Hwang, Lehigh University, PA, U.S.A. http://engineering.utep.edu/useu2dworkshop/ Disclaimer: The views expressed are those of the authors and do not necessarily reflect the views of the National Science Foundation 1 NSF US EU Workshop on 2D Layered Materials and Devices Sponsorship: NSF, UTEP, AFRL, and STARnet Workshop Organizing Committee and Break-out leaders Organizing Committee US Workshop Chair and Co-chair US Workshop Chair: Professor Anupama B. Kaul [email protected] Associate Dean for Research and Innovation AT&T Distinguished Professor MME & ECE (joint) The University of Texas at El Paso, El Paso, TX, USA US Workshop Co-chair: Professor James Hwang [email protected] Director of Compound Semiconductor Laboratory Department of Electrical and Computer Engineering Lehigh University, Bethlehem, PA, USA EU Workshop Chair and Co-chairs EU Workshop Chair: Professor Jari Kinaret [email protected] Director of Graphene Flagship Department of Applied Physics Chalmers University of Technology, Gothenburg, Sweden, EU 2 EU Workshop Co-chair: Professor Vladimir Falko [email protected] Distinguished Professor Department of Physics- Lancaster University, England, United Kingdom, EU EU Workshop Co-chair: Professor Andras Kis [email protected] Director for Laboratory of Nanoscale Electronics and Structures, EPFL, Switzerland, EU Steering Committee Dr. Dimitris Pavlidis [email protected] Program Director, Engineering Directorate National Science Foundation, Arlington, VA, USA Dr. Wide Hogenhout [email protected] European Commission Directorate-General for Communications Networks, Content and Technology; Directorate C 'Excellence in Science' - Unit 'Flagships'; Office BU33 6/53 B-1049 Belgium, EU Program Manager Dr.
    [Show full text]
  • Lucia Gemma Delogu CV Dec 2020
    Lucia Gemma Delogu Assistant Professor (Tenure track) University of Padua, Via Ugo Bassi 58, Padua, Italy Email: [email protected] Curriculum Vitae Lucia Gemma Delogu, Ph.D. last update: December 2020 PERSONAL INFORMATION Family name, First name: Delogu, Lucia Gemma Researcher unique identifier(s): ORCID ID 0000-0002-2329-7260 Nationality: Italian URL for web site: www.delogulab.eu Email: [email protected] Phone: +390498276134 SHORT BIOGRAPHY Lucia Gemma Delogu , Ph.D., is the head of the ImmuneNano-Lab at the Department of Biomedical Sciences of the University of Padua (UNIPD, Padua, Italy) www.delogulab.eu . After acquiring her experience in Immunology and Material Science at the University of Southern California (Los Angeles, USA) and at Sanford- Burnham Institute (San Diego, USA), she served for 5 years as Assistant Professor (non tenure track) at the University of Sassari (Italy) and as Visiting Professor at the Technische Universität Dresden (TUD; Dresden, Germany). Dr. Delogu has been the Scientific Coordinator of two interdisciplinary EU projects , under HORIZON2020, including a RISE project on nanomedicine and immune interactions of nanomaterials, involving more than 10 leading Institutions and high-profile international scientists on nanotechnology and nanomedicine. In this field, she has received several awards, including the “ Marie S. Curie Individual Fellow ” at TUD under HORIZON2020 from the European Commission, the “200 Young Best Talents of Italy 2011” from the Italian Ministry of Youth, and “Bedside to Bench & Back Award” from the National Institutes of Health, USA. Since 2020, Dr. Delogu is in charge of the Italian chapter and a member of the road map working group of the Advanced Material Global Pandemic & Future Preparedness Taskforce (AMPT) www.amptnetwork.com/ .
    [Show full text]
  • Raman Fingerprints of Atomically Precise Graphene Nanoribbons
    Raman fingerprints of atomically precise graphene nanoribbons Ivan A. Verzhbitskiy,1,† Marzio De Corato,2, 3 Alice Ruini,2, 3 Elisa Molinari,2, 3Akimitsu Narita,4 Yunbin Hu,4 Matthias Georg Schwab,4, ‡ M. Bruna,5 D. Yoon, 5 S. Milana,5 Xinliang Feng,6 Klaus Müllen,4 Andrea C. Ferrari, 5 Cinzia Casiraghi,1, 7,* and Deborah Prezzi3,* 1Physics Department, Free University Berlin, Germany 2 Dept. of Physics, Mathematics, and Informatics, University of Modena and Reggio Emilia, Modena, Italy 3 Nanoscience Institute of CNR, S3 Center, Modena, Italy 4 Max Planck Institute for Polymer Research, Mainz, Germany 5 Cambridge Graphene Centre, University of Cambridge, Cambridge, CB3 OFA, UK 6 Center for Advancing Electronics Dresden (cfaed) & Department of Chemistry and Food Chemistry, Technische Universitaet Dresden, Germany 7 School of Chemistry, University of Manchester, UK † Present address: Physics Department, National University of Singapore, 117542, Singapore ‡ Present address: BASF SE, Carl-Bosch-Straße 38, 67056 Ludwigshafen, Germany * Corresponding authors: (DP) [email protected]; (CC) [email protected] Bottom-up approaches allow the production of ultra-narrow and atomically precise graphene nanoribbons (GNRs), with electronic and optical properties controlled by the specific atomic structure. Combining Raman spectroscopy and ab-initio simulations, we show that GNR width, edge geometry and functional groups all influence their Raman spectra. The low-energy spectral region below 1000 cm-1 is particularly sensitive to
    [Show full text]
  • Book of Abstract V8
    GM-2016 Graphene and related Materials: properties and applications International Conference Paestum, Salerno (Italy) May 23-27, 2016 ABSTRACT BOOK This event is organized by CNR-SPIN and University of Salerno Under the Patronage of INTRODUCTION The International Conference GM-2016 “ Graphene and related Materials: properties and applications ” brings together experts in the field of fabrication, characterization and application of graphene, graphene oxide and related 2D materials. The Conference is organized by the Institute for Superconductors, Innovative Materials and Devices (SPIN) of the Italian National Research Council (CNR) and the University of Salerno, under the Patronage of the Italian Ministry of Foreign Affairs and International Cooperation. The Conference programme is scheduled in oral and poster presentations, with the aim of stimulating discussions and knowledge exchange in the following areas: V Graphene and Graphene oxide o Synthesis, characterization, properties, and applications o Growth of large area Graphene o Physics and chemistry of Graphene o Graphene for plasmonics and optics o Field emission from Graphene o Graphene based nanoelectronic devices o Graphene and Graphene oxide for energy (battery, capacitor, catalysis, solar) V Graphene based polymer composites o Functionalization of Graphene and development of novel sensors o Graphene for Flexible Electronics, Sensors & Composites V Graphene-like 2D materials o Integration of Graphene with other 2D materials o Electronic, optoelectronic properties and potential applications o Growth, synthesis techniques and integration methods o Chemistry and modification of 2D materials o Structural, electronic, optical and magnetic properties of 2D materials and devices o Applications of 2D materials in electronics, photonics, energy and biomedicine The social events include a visit to the Paestum Archeological site on 25 th May and a Gala Dinner on 26 th May, and encourage scientific discussions in a relaxed atmosphere.
    [Show full text]
  • Cdt Summer Conference 2017
    CDT SUMMER CONFERENCE 2017 on the Science and Technology of Graphene and Related Materials th th 12 –15 June Wyboston Lakes, Bedfordshire, UK Welcome A very warm welcome to Wyboston Lakes for the CDT Summer Conference 2017 on the Science and Technology of Graphene and Related Materials. The conference is a student-led event, organised between the University of Cambridge-based CDT in Graphene Technology, the NOWNANO CDT of the University of Manchester and Lancaster University, and the Spinograph project, coordinated by INL, Spain. It will include talks from both eminent, world renowned scientists and CDT students, as well as posters, industry talks, panel discussions and a range of social activities and opportunities for networking. Over the conference, across the 4 days, we will focus around five main subject areas within the field of two-dimensional nanomaterials; fundamental research, biomedical and sensing applications, solution-phase processing, optoelectronics/ photonics and spintronics. We very much hope you enjoy your time. CDT summer conference 2017 committee Contents Conference information …. …………………………………… 1 Invited speakers ….. ……………………………………………. 4 [IS1] Dr Kirill Bolotin - Bending, pulling, and cutting wrinkled two- dimensional materials …… ………………………………………………………. 5 [IS2] Prof. Francisco Guinea - Novel features of edge channels in two dimensional materials …… ………………………………………………………. 7 [IS3] Prof. Ali Khademhosseini Nano - and Microfabricated Hydrogels for Regenerative Engineering ………………………………………………………. 9 [IS4] Prof. Clare Grey - New Characterisation Approaches Applied to Batteries and Supercapacitors ……. ……………………………………………. 11 [IS5] Prof. Cinzia Casiraghi - Water-based 2D-crystal Inks: from Formulation Engineering to All-printed Devices ………………………………. 13 [IS6] Dr. Francesco Bonaccorso - 2D crystals for photonics and optoelectronics ... …………………………………………………………………. 14 [IS7] Dr. Amir Gheisi - Towards a Discovery Solution for Nanotechnology – Challenges & Prospects.
    [Show full text]
  • TENTATIVE PROGRAM (As of 06/07/2020)
    TENTATIVE PROGRAM (as of 06/07/2020) K: Keynote lecture / I: Invited Lecture / O: Oral contribution / FP: FlashPoster contribution Tuesday (07/07/2020) 08:50 – 09:00: Opening - Welcome and Introduction Antonio Correia (Phantoms foundation, Spain) Jean-Christophe Charlier (UCLouvain, Belgium) 09:00 – 09:30: Zhongfan Liu (Peking University, China) K Targeting the Mass Production of CVD Graphene 09:30 – 10:00: Dmitri Efetov (ICFO, Spain) K Magic Angle Bilayer Graphene - Superconductors, Orbital Magnets, Correlated States and beyond 10:00 – 10:30: Hui-Ming Cheng (Chinese Academy of Sciences, China) K Mass Production of 2D Materials by Exfoliation and Their Applications 10:30– 10:45: Break 10:45 – 11:15: FlashPoster Session 11:15 – 11:45: Andrea Ferrari (University of Cambridge/CGC, UK) K Layered Materials Optoelectronics 11:45 – 12:15: Max Lemme (AMO GmbH, Germany) K Electronic Devices based on 2D Materials – Opportunities and Open Challenges 12:15 – 12:45: Cinzia Casiraghi (University of Manchester, UK) K Biocompatible 2D Material-based Inks: from Printed Electronics to Biomedical Applications 12:45 – 13:30: ePosters session 13:30 – 14:15: Lunch Break 14:15 – 14:45: Stephan Roche (ICREA/ICN2, Spain) K Emerging Properties in Two-dimensional. Strongly Disordered & Amorphous Membranes 14:45 – 15:15: Mauricio Terrones (The Pennsylvania State University, USA) K Defects in 2D Metal Dichalcogenides: Doping, Alloys, Vacancies and Their Effects in Magnetism, Electronics, Catalysis, Optical Emission and Bio-Applications 15:15 – 15:35: Yuan Ping (UC
    [Show full text]
  • Rayleigh Imaging and Raman Spectroscopy of Graphene Cinzia Casiraghi Fachbereich Physik, Freie Universität Berlin Graphene Is T
    www.london-nano.com Rayleigh imaging and Raman spectroscopy of graphene Cinzia Casiraghi Fachbereich Physik, Freie Universität Berlin Graphene is the two-dimensional building block for the carbon allotropes of every other dimensionality: graphite, nanotubes and buckyballs can all be viewed as derivatives of graphene. Graphene has unique properties: it is the thinnest and strongest material in the universe and it shows giant charge carriers mobility [1]. Its charge carriers have the smallest effective mass (it is zero) and they can travel micrometer-long distances without scattering at room temperature [1]. Graphene also shows very high thermal conductivity and stiffness and it is the only membrane impermeable to gases [2]. Electron transport in graphene is described by a Dirac-like equation, which allows the investigation of relativistic quantum phenomena [3]. Because of its mechanical stability, ballistic transport and compatibility with planar technology, graphene is a promising candidate for future electronic applications [4]. However, the identification and counting of graphene layers is still a major hurdle as monolayers are a great minority amongst accompanying thicker flakes [1]. Thus, developing tools for the quick, non-destructive identification of graphene layers is imperative to enable graphene technology. In this talk I will show that Rayleigh and Raman spectroscopy are fast, sensitive and not-destructive techniques able to identify graphene. Rayleigh spectroscopy is a very efficient tool for mapping substrates in search of graphene and to count the number of layers [5]. Raman Spectroscopy is able to uniquely distinguish graphene from few-layers graphene and graphite, and also to monitor the amount of disorder and doping, edges and charged impurities in graphene [6-11].
    [Show full text]
  • Acs.Jpcc.0C10095
    The University of Manchester Research Gamma radiation-induced oxidation, doping, and etching of two-dimensional MoS2crystals DOI: 10.1021/acs.jpcc.0c10095 Document Version Final published version Link to publication record in Manchester Research Explorer Citation for published version (APA): Isherwood, L. H., Athwal, G., Spencer, B. F., Casiraghi, C., & Baidak, A. (2021). Gamma radiation-induced oxidation, doping, and etching of two-dimensional MoS crystals. Journal of Physical Chemistry C, 125(7), 4211- 4222. https://doi.org/10.1021/acs.jpcc.0c10095 2 Published in: Journal of Physical Chemistry C Citing this paper Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version. General rights Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Takedown policy If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown Procedures [http://man.ac.uk/04Y6Bo] or contact [email protected] providing relevant details, so we can investigate your claim. Download date:08. Oct. 2021 pubs.acs.org/JPCC Article Gamma Radiation-Induced Oxidation, Doping, and Etching of Two- Dimensional MoS2 Crystals Liam H. Isherwood, Gursharanpreet Athwal, Ben F. Spencer, Cinzia Casiraghi, and Aliaksandr Baidak* Cite This: J.
    [Show full text]
  • Probing the Nature of Defects in Graphene by Raman Spectroscopy
    Probing the Nature of Defects in Graphene by Raman Spectroscopy Axel Eckmann1, Alexandre Felten2,3, Artem Mishchenko4, Liam Britnell4, Ralph Krupke3, Kostya S. Novoselov4, Cinzia Casiraghi1,2 1 School of Chemistry and Photon Science Institute, University of Manchester, UK 2 Physics Department, Freie Universität Berlin, Germany 3 Karlsruhe Institute of Technology, Karlsruhe, Germany 4 School of Physics and Astronomy, University of Manchester, UK Email: [email protected] Abstract Raman Spectroscopy is able to probe disorder in graphene through defect-activated peaks. It is of great interest to link these features to the nature of disorder. Here we present a detailed analysis of the Raman spectra of graphene containing different type of defects. We found that the intensity ratio of the D and D' peak is maximum (~ 13) for sp3-defects, it decreases for vacancy-like defects (~ 7) and reaches a minimum for boundaries in graphite (~3.5). Keywords: graphene, Raman Spectroscopy, defects, Conductive AFM. Manuscript text Since its first experimental observation, graphene has triggered enthusiasm in the world's scientific community due to its outstanding properties. 1,2 In particular, near-ballistic transport at room temperature and high carrier mobilities3-6 make it a potentially attractive material for nano-electronics. Despite being praised for being inert, ultra-strong and impermeable to any gaseous material,7 realistic graphene structures always contain defects.8 One generally refers to defects in graphene as anything that breaks the symmetry of the infinite carbon honeycomb lattice. Thus, different types of defects can be defined such as edges, grain boundaries, vacancies, implanted atoms and defects associated to a change of carbon-hybridization, for example from sp2 into sp3.
    [Show full text]