<<

N O T I C E

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE i I.. JG a OCCURREACE AND MINERAL. CHEMISTRY of HIGH PRESSURE PHASES POTUL 40 , SQUTHCENTRAL

i

Final

'y Technical Report

fi

v3 0% g^% LN SO,

Principal Investigator: J. M. Hoffer

Period Covered; June 1, 1980 to May 31, 1982

Name of Institution: The University of Texas at E1 Paso

r Grant Number: NASA NSG 9062

t (NASA°-CR-16.9008) OCCURRENCE AND MIVEDAL N82-25679 CHEMISTRY OF HIGH R,N'LSSU^RE PHASES, EUTRILLU BASALT, SOUTHCEN'Tii.AL VIEW M IC0 M.S. I.Hesis Final Technical Report, 1 Jun. 1980 - 31 May Uxicxas 1582 (Texas Una. v.) 100 be A 05/MF A01 G3/46 179 31

M^4y 31 9 '1982 s.

t -

e

e

s ..Y e. C5 . '= .. . ;.. ,...... -t »K.au.m..«:.eF^.,,reaiwr y^Yyu,w aw.9xvtls This Report w Represents an M,S« Thesis

by

Tatum Michael Sheffield Y

Department of Geological Sciences The University of Texas at E1 Paso El Paso, Texas 79968 1

ACKNOWLEDGEMENTS

T wish to thank Dr. Jerry M. Hoffer, University of Texas

at El Paso, who suggest ^Pd. the project and guided me throughout

the course of the work. The thesis was financed through a

grant to Dr. Jerry M. Hoffer from the National Aeronautics and

Space Administration (Grant NSG 9062). Special thanks are due

also to Dr. D. Barker, University of Texas at El Paso, for sup-

plying the listing of the CIPW Norm Program. I also wish to

thank my friends and colleagues at the University of Texas at

El Paso for their constant help and many discussions. t

ABSTRACT

The area of investigation is located in the southwestern

corner of Dona Ana County, New Mexico. The West Potrillo

Basalt Field is a broad, north-trending range composed of num-

erous Quaternary basalt flows and cinder cones.

Most of the flows are alkali-olivine with rare

occurrences `of flows with a tholeiitic composition. The ba-

salts are vesicular, hypocrystalline, microporphyritic to por-

phyritic. Feldspar megacrysts are found on the flanks of cin-

der cones, as inclusions within lava flows and in the cores of

volcanic bombs. Based on petrography and chemistry, the pheno-

crysts are interpreted to have formed at great depth rather

than as phenocrysts of larger,crystal aggregates.

Hoffer (1976) divided the basalts into two members: Mem-

ber 1, an older plagioclase-rich basalt; and Member 2, a younger

olivine-rich basalt. The presence of these two members have

been confirmed by modal and chemical analysis. Chemical anal-

ysis has also confirmed the presence of flows that are tholeiitic

in composition and could be remnants of an original tholeiitic

parent magma. Eruptions from different levels of a differen-

tiated magma chamber are proposed to account for the two members.

TABLE OF CONTENTS

Page

Acknowledgements...... ii

,Abstract.

1 Table of Contents . . . . iv

List of Figures ...... vii

List of Plates...... viii

List of Tables...... viii

Introduction ...... 1

Locution and Accessibility ...... 1

P u rpo s e...... 3

Gdography and Physiography ...... 3

Vegetation and Climate ...... 4

Field and Laboratory Work...... 4 r Collection of Samples ...... 45 j

Preparation of Samples......

Methods of Analysis . . . . 5

Petrography ...... 5

X-ray Fluorescence. 5

Norm Calculations . . . 6 I Regional Geo ogy...... - . 9 :4 9 f Geologic History ......

Faulting ...... 11

Stratigraphy...... 12

Introduction ._ ...... 12

Tertiary 12

IU ^t

all 161%o Volcanic R OCKS...... iC.

Mt. Riley-Mt. Cox Intrusion ...... 12

Qu aternary ...... 13 ^. ...... 1 3 Sand. . . . . -...... 13 Alluvium...... 16 Petrography'...... f . . . 17

Introductio n 17 Potrillo Basalt...... 17 Texture ...... 17

Essential Minerals...... 37

x Plagioclase Feldspar ...... 17

Clinopyroxene...... 20 Olivine...... 21

Accessory Minerals...... 24

Opaque Minerals...... 24

A nalcime ...... 24 Chrome Spinet ...... 24

Glass...... 24

Serpentine and Chlorite_. . . 24 Calcite...... 25

Feldspar Megacrysts...... 25

Ge ochemistry...... _ . . . . . 28

West Pot -rillo Basalt ...... _ . . 28 G

8

Classification...... It . . . . 2B Chemical Variations ...... 45

Mineralogical vs. Chemical Variations . . 45

Feldspar Megacrysts ...... 47 Introduction ...... 47

Classification ...... 47

Interpretati'on...... 54

Comparison to Area Basalt Flows ...... 55 Discussion ...... 58

Conclusions and Summary ...... 65

Annonel4 v n • B a s a 1 t camp! I ocat 4_one 67 Appendix B. Point Coints ...... 71 . Appendix C Norm Calculations...... 73 Appendix D; Description of Feldspar Samples...... 85

R eferences Cited...... 88

Vita...... e. 91

r; f

k LIST OF FIGURES i Page

Figure 1. Index map of the Potrillo Basalt field...... , . . . . . 2.

Figure 2. Location map of Southern I Rio Grande Rift ...... 10 Figure 3. Alakli vs. silica diagram ...... 37 Figure 4. Ne-Q-01 diagram 'Alkaline vs. subalkaline...... 39

Figure 5. Ab'-Or-An diagram Sodic vs Potassic ...... 40

Figure 6. Normative color index vs. normative plagioclase composition ...... 41

Figure .. 11ormati've plagioclase U'uiiiposition vs Ai 203 Tholeiitic vs Calc-Alkaline ...... 42

Figure 8. A-F-M diagram ...... 43

Figure 9. Plot of normative mineralogy...... 44

Figure 10. Discriminant plot Member 1 vs Member 2 ...... 46

Figure 11. Ab-An -Or diagram Classification of Feldspars ...... 53

Figure 12. A-F-M diagram Comparison of area basalts...... 57

Figure 13. Fractionation. diagram ...... AI I

Figure 14. Cross section Rio Grande Rift . .- . . . . . LIST OF PLATES

4 Page : Plate 1 View of West Potrillo cinder cones . . . 14

Plate 2 Plagioclase flow around phenocrysts...... 18 r : Plate 3 Titanaugite showing skeletal centers , . . . 22 Plate 4 (A) Olivine embayed by groundmass i in flow ...... 23 (B) Olivine embayed by groundmass in volcanic bomb ...... 23 i Plate 5 Representative feldspars ...... 26

Plate 6 Feldspar in bomb (embayed) ...... 27 7 Plate Basalt and feldspar megacrysts _ sample location map ...... k ,

LIST OF TABLES f Table 1 Norm Symbols Used in This Study...... 7

Table 2 Characteristics of Cinder Cones...... 15

Table 3 Average Modal Analysis ...... 19

Table 4 Member 1 Chemical Composition, ...... 29

Table 5 Member 2 Chemical Composition...... 32 a n Table 6 Basaltic , Volcanic Bombs, and ' Basalt Dike-Compositions ...... 36

Table 7 Feldspar Megacrysts Chemical ' Compositions . . . . •, . 48 x Table _8 Chemical Analysis of west Potrillo Basalt (from Hoffer 1976)...... 59 c i

viii a' a k ees-

a f

INTRODUCT ION s

"s The West Potrillo Basalt Field is located in the south-

western corner of Dona Ana County, New Mexico, approximately

48 km west of E1 Paso, Texas. The West Potrillos Mountains are

bounded on the south by the boundary between the

and Mexico, on the east by longitude 107 0 15 1 W, on the north by latitude 32°13' N, and on the west by longitude 107 0 15 1 W (Fig. 1) .

The southern are accessible by

traveling on Interstate 10 to the Mesa Street Exit, then travel-

ing west on Mesa Street to Country Club Road. Turn right on

McNutt Road and travel west onto the LaMesa surface 4.8 km and 1 bear right through Strauss, New Mexico. Turn heft at the Colum-

bus Road to Mt. Riley and Columbus, New Mexico. Travel west

for about 32 km approximately paralleling the international bor-

der. Access to the southern West Potrillo is from ranch roads

north of the Columbus Road. The northern West Potrillo is

easily accessible by traveling west on Interstate 10 from El

Paso to Las Cruces, then conti,iue past Las Cruces for 40 km.

Access to the northern West Potrillos is by ranch roads south r of Interstate 10.

Previous Work ^. a

Previous work in the area was done by Hoffer (1973) r if who described the geology and petrology of the area. Renault

- (1970) analyzed and reported the major element geochemistry of f t

`f

a_ Z

ORIGINAL PACE I:) OF POOR QUALITY

Fig. 1. Index map of the Potrillo Basalt Field, stud, area shown in hatchers.

^lrr . - - t -,.. - ;^n.... ^ . k., .....w.,. a_. m ,.... ay.w.,,.^..ww.cxr•.....,..e.^',.,...... ,u+u^...'^.a. S...s.wv.eus.r i - w1^IW...^ ^ H uuL :....,.gray n ...... a a

3

3t i (r a

a selected number of basalts from the West Potrillo Mountains,

Hoffer (1976) discussed the regional geology and petrology of

the basalt in relation to the Rio Grande Rift. Hoffer and Hoffer

(1973) discussed the composition and structural state of feld-

spar inclusions from alkali-olivine basalts in the West Potrillo

Basalts. Bersch (1977) reported on the petrography and geology of the southern West Potrillo Basalt Field, and Ortiz (1979) des- cribed the megacrysts and mafic and ultramafic inclusions of the

southern West Potrillo Basalt Field.

Purpose

The purpose of this thesis is to: 1) determine the

maJor element chemistry of the entire West Potrillo Basalt field, 2) describe the mineralogy and textures of the basalts,

and 3) determine the relationships between the feldspar mega-

crysts and the host basalt.

Geography and Physiography

The Potrillo can be divided into three

regions: 1) a regiog to the east composed of the Santo Tomas-

Black Mountain basalt field 2) a central region containing the

Aden Afton basalts and several (, Hunts

Hole, and Potrillo ) and 3) the region of the West Potrillo t Mountains (Hoffer, 197`6).

The Potrillo basalt flows were erupted onto the LaMesa

surface, a flair plain developed withinthe Mesill-a Bolson during w

4

x 0

middle to late (Hawley and Kottl owski , 1969) . The

West Potrillo Mountains, the area of t his investigation, forms

a broad, north-trending constructional plateau composed of num-

erous basalt flows and over 160 cinder cones. The area is in-

eluded in the Mexican highland section of the Basin and Range

province (Fenneman, 1931)4

Vegetation and Climate

The area is covered with cholla, mesquite bush, narrow

leaf yucca, prickly pear, lechugilla and barrel cacti,

The climate of the study area is semi arid. Average

summer temperatures frequently exceed 100 F (30°CO) i ry inter dV!, time temperatures are seldom less than 32°F (0°C). The average yearly precipitation is nine inches (23 cm),

most of which occurs as thunderstorms in July and August ( U.S.D.A.,

194i). Prevailing winds on the surface are westerly averaging

about 9.6 km pe r hour. During the spring months the wind v.el- r ocity averages 40 km per hour (King et, 1. 1969).

Field and Laboratory Work

Collection of Samples f Sampling of the northern West Potrillo Basalt was done during the summer of 1979 by the author. Samples were collected of basalt flows, cinder' cones, volcanic bombs, and feldspar mega

crysts Samples from the southern West Potrillo, collected by

a fi 5

• Y

Michael Bersch and Terry Ortiz, were also utilized in this

study. A total of 1010 samples were collected -- 162 of basalt,

and 548 feldspar megacrysts. Basalt and feldspar megacryst,s

sample locations are shown in Appendix B,

Preparation of Samples

The samples were prepared and analyzed during the summer

and fall of 1980. One hundred and sixty- seven' samples were

ground in a disc grinder, pulverized in a SPEX 8500 shatterbox

for six minutes and pellitized under 20 tons of pressure in a

Spex-25 hydraulic press. Of this total, 77 samples were from

basalt flows, 18 from cinder cones, 19 samples of a lltered ha-

salt, 2 volcanic bombs, 1 basalt dike, and 70 feldspar mega-

crysts. Also, 20 thin sections were prepay-ed; 15 were from

flow basalts and 5 from volcanic bombs.

Methods of Analysis

Pe trog raph y

Fifteen thin sections were observed under a standard

petrographic microscope. Observations were made for texture a and major mineral constituents with estimates of mineral compo-

sition were possible. Point cointS based on 100 points were completed on 10 thin sections.

X-ray Fl uore,scence µ One hundred and sixty-six s ampl es were analyzed on an

Ortec TEFA Model 6110 X-Ray energy dispersive fluorescence, anal- 4 ' yzer. Analyses were made for the ten major oxides: SiO , Ti0 2 2

.. _ .. :^.. ,.. ,... ,. b: o-r! .. ._. _..r. _ ,.rr... t..wa. -. -..^. r...... :.:.^..^...... b..,.._^r,i ..-^.:- .. ^,..a^ s.rx..sm;r`•... ,.n.,.,., . sue_._.,. .. h...,c^t.erc:. _ 6

Al 2 0 3 , FeO, MnO, MgO CaO, Na 2 O K 2 0 1 and P 2 0 5 . The standard,

CALC program was used for calculating intensities and concen-

trations of X-ray lines in combination with the FLINT inter-

element correction protocal to determine matrix corrections for the samples.

Norm Calculations

A standard CIPW norm program was obtained from the

University of Texas at Austin and adapted to the University of

Texas at E1 Paso's IBM 360 computer by the author.

CIPW Norms were calculated for 77 basalt samples from

the chemical analysis obtained by x-ray fluorescencf), The norm

notation used here is listed in Table 1.

Three adjustments were made to the oxide percentages

before CIPW norms were calculated;

1) Total iron was recorded as FeO from x-ray fluor-

escence data. For the purposes of calculating

molecular norms, the FeO was separated into FeO

and Fe 2 0 3 using a ratio of 1,8 to 1. This ratio

was based on chemical analysis of ferrous and ferric

iron by T. Asari, Japan Analytical Lboratory, of t two samples from the West Potrllo Basalt Field

(Hoffer, 1976). c 2) An upper limit on Fe 2 0 6 was set using the equation

besed on Irvine and Barager (1971) fi

%Fe 2 0 3 %Ti0 2 + 1.5

t

1 F

Table 1, Norm Symbols

Q - quartz, 5102 C - corundum, Al203 Or - orthoclase, KA1S1308 Ab - albite, NaAlSi398 An - anorthite, CaAl2Si208 Lc - leucite i KA1Si206 No - nepheline, NaAlSi204 Di - diopside = xollastonite(Wo) + enstatite(En) + ferrosilite(Fs) = Casio3 + rgsio3 + resiO3 Hy - hypersthene = En + Fs = MgSiO 3 + PeSiO3 01 olivine = Fo + Fa = Mg PO4 + Fe 2S'04 Mt - magnetite, Fe 394 Il ilmenite, FeTiO3 Ap - apatite, oa5(PO4)3 Cc - calcite, CaCO3 Ab'- Ab + 513Ne Q Plagioclase = Ab + An Normative plagioclase composition = 100 * An/An + Ab + 5/3Ne Normative color index = 100 - (Q + Or + Ab * An + Lc + Ne)

Notes Ne is converted to Ab based on the relation: NaA1SiO4 + 2SiO2 = NaAlS1398 3Ne + 2Q = 5Ab So each unit 01 Ne gives 5/3 units 01 Ab. it

p No change occurs if the analysis value is less, but

R an excess is converted to FeO, and yields a more

undersaturated norm. lJ 3) In order to place all comparisons on the same basis, ► I` the oxide analysis was recalculated to 100% with-

out COZ.

The above adjustments assume that the rock was exposed

to volatiles only during metamorphism or alteration.

The computer program outputs both weight, percent and

molecular norms. For purposesp of graphicalp projection, the

molecular norm values were used with Ne recast as Ab (Table 1).

This allows the ratio of Ab to Or to be a more accurate measure

of the atomic ratio of sodium to potassium (Irvine and Barager,

1971). jr

. REGIONAL GEOLOGY

Geologic History

The West Potrillo Basalt Field is located in the southern

end of the Rio Grande rift (Fig. 2). The boundaries of the south-

ern end of the rift are outlined based on the assumption that high

C heat flow, young faulting (less than 0.4 m.y.), occurrence of late Pliocene and younger volcanoes, and deep basins are surface

expressions of the rifts deep thermal structure (Seager+ and Mor-

gan, 1979).

Strata ranging from Paleozoic to Holocene are exposed in

the area. uDuring late Paleozoic and early repeated ad-

vances and withdrawals of seas initiated the deposition of marine

sediments. Folding and faulting of lower strata oc- curred during the Laramide disturbance in the East Potrillo

Mountains. Northwest of the , Mt. Riley-

Mt, Cox, a large andesitic pluton was emplaced during early to

middle Tertiary. During middle Tertiary, high-angle faulting

and uplift occurred in the East Potrillo Mountains and initiated

the formation of the Mesilla bolson,-an intermontane 'basin (Hof-

fer, 1976).

Rifting in the area began about 32 m.y. ago during the

middle Tertiary. Basaltic andesite 'volcanism occurred to about

20 m.y ago, followed by a lull in magmatism between 20 and 13

m.y. ago, Volcanism along the rift began again after the (20-13

m.y.) lull, with a sharp increase in basaltic volcanism about 5

9 10

ORIGINAL PAGE IS OF PoOR QUALITY,

Q 3

uJ W to

4. SON%

0 8

J t, wl 0 o' jai* -9 -H ej u W4 0 Sa

0 4) ul W

Its V) P,

4J +3

PAU pq do

C)t4ORA ino

:39 E ^l

F t^ m.y, ago (Chapin, 1979),

According to Chapin and Seager (1975), the 20-13 m.y. . p _ pause in volcanism separates two different thermal regimes -- f f; an older one occurring with initial extension in the rift pro-

ducing basaltic andesite volcanism, and a younger regime re-

lated to critical thinning of the lithosphere beneath the rift,

and which generated alkali olivine basalts The sharp increase

in basaltic volcanism 5 m.y. ago is probably a result of the

culmination of block faulting 8 to 3 m.y, ago with associated

i extension of the crust.

Faulting

The study area contains a number of maJor high-angle

faults; the largest being the Robledo and Fitzgerald faults r (Fig. l). The Robeldo fault crops out on the east side of the f East Potrillo Mountains along a northwest-trending scarp. The

scarp can be traced southward from the East Potrillo Mountains

into Mexico and northward under the Aden flows. The fault

emerges north of the Aden flows east of and trends r

S northeastward into the north of Las Cruces,

New Mexico (DeHon, 1965). The Fitzgerald fault parallels the

Robledo fault to the east and trends southwestward under the E Afton flows(Fig. 1), c

F t

4

t

{

wa.rw usw.atitwwr..L.. ,Ire.w__ .... i..uv._.x_.. !, n+s-er.M...aw +iMeJrw... rnvu.. .w..wea...a .a v.. x.aYrt.l.M]ew "u8"3+m^uaYw.,.3eahn. ^ialw.w ,W:;+:w ..,_ .._.. _._ . _ e. _.. .._. . r

t

ST'RATIGRAPHY

Introduction

The exposed rocks of the study area are Tertiary and i Quaternary in age. The Tertiary rocks consist of silicic vol-

canic rocks and the intrusive bodies of Mt Riley and Mt. Cox,

Rocks of Quaternary age consist of cinder cones, basaltic lava

flows, basaltic dikes-q and tuffs and tuff-breccia associated M with maar volcanoes of the Potrillo Basalt.

I

Tertiary

Silicic Volcanic Rocks k Silicic volcanic rocks crop out on the west and north

flanks of the study area. Hoffer (1976) states that the exact

age of these igneous bodies is not known, but since many show

intrusive contacts with Cretaceous strata they are considered

to be at least Tertiary. The • silicic volcanic rocks include

tuffs and flow breccias. The tuffs are thinly bedded and con-

tain phenocrysts of plagioclase and orthoclase, r Mt. Riley-Mt. Cox intrusion k The Mt. Riley-Mt. Cox intrusive mass rises 1600 ft

above the La Mesa Surface reaching an elevation of 6000 ft (Hof fr fer, 1976). The intrusion is a light-gray, holocrystalline,

' microporphyritic andesite to rhyodacite (Millican, 1971).

Millican (1971) states that chemipal and mineralogical similarities of the Mt. Riley-Mt. Cox pl uton to intrusive andes-

12 w f r

13

t

ites in the El Paso-Juarez area indicates common or similar

origins, and are of possible Eocene age.

Quaternary

. The basalts of the West Potrillo Mountains are thought

to be Quaternary (Hoffer, 1976). The volcanics consist of num-

erous cinder cones (Plate l), basaltic tuffs and breccias, maar

volcanoes, and thin alkali olivine basalt flows.

Based upon field relationships and petrography, Hoffer

(1976) has divided the West Potrillo Basalts into two members:

an older plagioclase-rich member, and a younger olivine-rich

member. In addition Hoffer (1976) suggested that the cinder

cones, based upon shape and degree of dissection, are of two

distinct ages: young and old (see Table Z).

Holocene

Sand

Holocene deposits of sand cover large areas of basalt

and collect on the east side of many cinder cones as a result

of the predominantly westerly winds.

The blown sand is composed primarily of subrounded,

clear to iron-coated, quartz grains averaging over 70%. Other

,minerals identified are feldspar, opaques, zircon, tourmaline, and pyroxene FHoffer, 1976). ~

4 15

Table 2 characteristics (after Hoffer, 1976)

Young Cones Old Cones

Height 2600-500 feet 50-300 feet

Slopes 20-25 degrees out by 10-20 degrees shallow arroyos out by deep arToyas

auunc=

Vents single multiple

Xenoliths rare abundant

Shape horseshoe in plan horseshoe to irregular in plan

it 16

A Alluvium

Recent alluvium occurs in minor playas and in stream

channels throughout the study area. St ream channel material is

silt to medium-grained sand. At the base of cinder cones the

deposits become conglomeratic containing pebbles and cobbles of basalt (Bersch, 1977).

r ^

f j

4 P

x

kk 1 PETROGRAPHY E Introduction

Twenty thin sections from the northern West Potrillo

Basalt were examined for iaineral composition. Modal percent-

ages were estimated for ten basalt samples, five from Member it and five from Member 2. Estimated modal percentages of basalt samples from the northern West Potrillo Basalt are shown in

Appendix B. A summary of comparative modal percentages of tie two members is given in Table 3.

4 Potrillo Basalt

Texture

The West Potri , llo Basalts are highly vesicular to

dense, and ranges in color From dark gray to black. Surface

weathering yields a reddish brown to purple color on some flows.

The lava flows are hypocrystailine, microporporphyritic to por-

phyrittc with a microcrystalline groundmass. The-texture of the

groundmass is intersertal to intergranular.

Essential Minerals

Plagioclase Feldspar

Plagioclase occurs mostly in the groundmass as subhed-

ral laths that are aligned and show flow structure around pheno

crysts (Plate 2) The laths range from .01 mm to l mm long with

a composition that ranges from An4 0 to An 70 (andesite to labra-

17 18

U,

s

Plate 2 Plagioclase f1ow around phsnocrysts• 00 ' rO-• M Nr eN+ is

1 +j • ^ ! d N ,f CQ to 4 ' N M r rM- M

LO O t0 w , C f f w

f r f LL w ^ V) ^. V! CD w r M to Ln

oo N N M r- tp O N O N ` owltl 4- N N M rd'— NO O r rO; C O Q1 N GJ M 0 r co co ' b E E ti ' !O L Al w Ch1 • • 00 to • • O Ln ~ > L 01^ a,Ih Q 4) 'C7 O r b St r ^ .OE 1^ et O1 ct M = w its O A N r N M b ^. O Ci N n O N W) 40- I CD p O L f!S r O x +' o 4' o o r'. r- N N Ln cn

,^ cn r Z:O 2O r rt7 cm w _ _

c 'Ci T^ w P` w 'O. ^ h, w r J `L7 N r. V) ti" > N N r- 01 d • b O L. N X (0 0 ^. N X Ol r L w d w.r w O w.r R! u ?) 0! Vf tDCOM O V) rl^ m M "a f.. •1- C •' 0 E N `(U e- 0 E N -a) 06aE f^.M m ELn LLnG M i « r ^- r d r 4 to %D OW O ' < id r k- CD C. t^ O O C7 O N O ... N ... N p .... RV ... k , `,

F FFF^!!!1 x

i :., - kJib!'YWnl Yita ,t. ,.-. v .t_.,.^k f. e,., .., 20

dorite). Average plagioclase lath size in Member l and Member 2

is 0.1 and 0.6 mm, respectively. Plagioclase laths in both mem-

bers show wavy extinction indicating chemical zonation. Peri-

cline, carlsbad and albite twinning are common in both members.

Member 1 has a slightly higher modal percentage of plagioclase

than Member 2, 27% and 20% 0 respectively.

Clinopyroxene

Clinopyroxene occurs in the groundmass and as pheno-

crysts. Bersch (1977) set an arbitrary maximum dimension of 0.3

mm to divide groundmass and phenocrysts of clinopyroxene in the

West Potrillo Basalts. Member 1 contains clinopyroxene in the t i groundmass and as phenocrysts less than 0.5 mm in length, and

Member 2 has clinopyroxene phenocrysts 0.3 go 2.;5 mm in length

(Bersch, 1977). The average modal composition of clinopyroxene i in Member 1 and Member 2 is 24% and 37%, respectively. The

groundmass clinopyroxene is euhedral, prismatic to equidimen-

sional microlites and ranges in composition from augite to titan-

ium-rich augite. They varied in color from brown to greenish- yellow t The phenocrysts of titan-augite are the most abundant

of the two sizes of clinopyroxene. The phenocrysts are usually , light to dark brown. Zoning from light brown centers to dark r, brown rims is common. The phenocrysts are euhedral with occil

latory zoning and hour- glass structure common. Many of the

phenocrysts have incomplete or skeletal centers (Plate 3) which

could indicate formation during a period of rapid growth (Bersch,

C '`l^ 1977).

F 21

il

Ol i yi ne

Olivine occurs as euhedral to subhedral, six-sided,

prismatic phenocrysts. The crystals range from 0.1 to 6.0 mm ti in length. The olivine composition, as indicated by a high 2V

of 85 to 90 0 , is Fa 10 (Bersch, 1977). A high Mg value is sup- ported by the high normative Fo in the norm calculations (Appen- dix C). Member 2 has a slightly higher modal olivine percentage' than Member 1, 12% and 9%, respectively. The olivine pheno-

crysts in lava flows and volcanic bombs are commonly embayed,

indicating that they were not in equilibrium with the magma

(Plates 4a and 4b). Inclusions of chrome spinel and opaque min-

erals are common and could indicate crystallization at depth.`

Some olivine phenocrysts also =exhibit multiple twinning which J gives the crystal a saw -tooth appearance.'

Replacement of olivine by opaque material occurs in

samples from cinder cones or from small flows associated with

the cinder cones. Olivine is altered to iddingsite which occurs .i as thin rims around the oli-vine. In some samples complete al-

teration of olivine to iddingsite, hematite and-serpentine

occurs.

Bersch (1977) suggested that the selective replacement J, of olivine took place within the vent of the cinder cone, with

volitiles streaming through the magma hydrating anal oxidizing

the olivine. Iddingsi-te, chlorite and serpentine represent

the end state , of deuteric alteration.

{ 22 a

a

E s

i

0 Plate 4a Olivine embayed by groundmass in flow. 24

R

., Accessory Minerals

Opaque Minerals

Opaque minerals occur in the groundmass of both Members as euhedral, equidimensional grains usually less than 0.6 mm. The most common opaque mineral is magnetite, a steel blue-black

mineral that is commonly octahedral. Crystals of illmenite are

also found, occurring as violet-black,flake-like crystals.

An a Analcime is present in the groundmass as anhedral

patches in cracks, and as a lining in vesicles.

Chrome Spinel

Chrome spinel occurs in olivine phenocrysts of both

Member 1 and 2 as brown, euhedral grains less than 0.05 mm.

G1 ass

Dark brown glass occurs as scattered patches and inter-

stitial material. Some samples show a devitrification of the

glass and clinopyroxene microlites in both Member 1 and 2 Mem-

ber 1 has a higher modal glass percentr than Member2, 23% and

13%, respectively.

Serpentine and Chlorite

Cholorite is found along the rims and cracks of some

olivine phenocrysts in both Member 1 and 2. Serpentine occurs

patches and stringers, and in some samples f in the groundmass as € appears after chlorite in the alteration of olivine. i

J 25

1 ^ d

Calcite

Secondary calcite lines and fills the vesicles of

many of the flows of both Member l and 2,

Feldspar Megacrysts

The alkali and plagioclase feldspar megacrysts are gray

to colorless, anhedral to euhedral t ranging in size from 3 mm to

6 cm (Plate 5^). A 6 cm feldspar megacryst was reporte d by Ortiz (1979).

Iron oxide inclusions and iron oxide staining on the

surface are present on some of the megacrysts that are found

4 loose on the flanks of some of the cinder cones. Little or no

reaction has taken place between the crystals and the basalt;

however, feldspar megacrysts included in the volcanic bombs do

!;how some embayment indicating that they were not in equilibrium' t with the magma (Plate 6), ?winning lamellae and conchoidal fracture is common

with alb to and pericline twinning present in many samples,

Ortiz (1979) statesthat the megacrysts show varying intensities

' of strain shadows that could have developed at depth or as a

result of unloading at the surface.

y

L ,,. i 4 t art

1 Y

y

}F Plate 6 Feldspar in bomb (embayed). f GEOCHEMISTRY

West Potrillo.Basalt

Introduction

Eighty samples of the West Potrillo Basalt field were analy-

yzed for ten major oxides by x-ray fluorescence; analyses are

reported in weight percent.

Seventy -seven of the samples represent basalt flows of

Member 1 and: 2. The results of these analyses are shown in

Tables 4, 5, and 6. Normative calculations were also performed

for the samples and the results are shown in Appendix C. The

samples were classified according to the scheme of Irvine and

Baragar (1971). Also, two volcanic bombs and one dike were

analyzed with the results shown in Table 6. Locations of the

basalt and megacryst samples are given in Appendix A and Plate 7.

Classification

The basalts were classified on the basis of an alkali

(Na 2 0 * K 2 0) vs silica diagram (Fig. 3). The diagram shows that a the majority of the samples plot as basalts but range from basan

i to (_< 5% normative Ne) to basaltic ande-s`i te. The samples range

from 42 to contain both normative hypersthene and M SiO 2 and nepheline. Two of the samples (209, 242; Table 6) plot as

basaltic andesite with an average silica content of 54%. The

distinction between basalt and basaltic at 510 2 = 52%

, is rrmmnatihl p with tha tarmi'nninnv of rarm^irhani c► i ai f1Q7d1

i^ 29

ORIGINAL PAG5 15 OF POOR QUALITY

^O -4^ H • ^ ^ .t M M O in i 00 01 0

^7 t71 •-1 M O •q' Nin 00 O 0; ^ 0 O 01 O^ 00 0% a% 0% 00 rn• t H a% C%Ch C% C, 000%,T CA m w F- o ^ Z N o^^^ o 0 0 0 0 ^ II -T cn -t ^?' p •N-1 L j N ^ Oft +^-! AG ra •-1 r-1 rl r-i .-i N N ^ i r-1 O O r-) i 1 UQ Ln 1 .- cn.-! r1 w U QcV pNp N u7 i^+ ^ 00 .-1 N P• 1 o L M . v: ^`" ^ fr • N 00 O^ 1, ' N N N S+ 4J W 1 cV N cV m N M CSI N N

,ra d .t CA 11 1a 1 00 N b a a • o 4 F-4 r-4 K^ O 4 co M H r7' M ^o N 1^ .-1 1l. 00 r'1 P-i w • • . • • M O O oD r^-1 00 • • • • • ^t 00 00 Q1 00 m 00 C11 Cif r0 co m ^p

w N fl% U' H ri .-1 .-1 r-1 ^-1 ^1` I+ tr1 •^-1 ^ ^ ►-i r1 r-1 C? O C^ O C7 O 9 O

n ^3 tG *O '' co O N M O! O n ^ n Ln 01 N ,-1 v

Oi N N O ^ li as^7 C O II O 01 * Ln W N1 • r1 It rl f-4 .-1 r-1 r-1 ".4 r^-1 r^-1 V-1 0-1 H i N m N O h A n %0w 0%o' r. 04 n n H N N N N N N N N N N N N

V- cN rw O N 1 r-1 u1 ^c• p co co0 N p ^ C O ,7 ,`^* u 1 1r1 M M OD ^p lft • rl DO M In . I • O N M -t 00 r-1 N -T in n O O O O p p v00 Oco O0000 O Om

t. R F

30

^a i ORIGINAL P`AGC IS PO4R QUALlry

to r- % M M a% a 00 a a1 00 ra t/i 1 N M M M M M M N M

.-i m C7 in 10 O kn O N W M m ^7 O null •-I en -7 LM w 00 A In O o at ON 00 m rn rn a Co ao 0; 00 CA all ON ► ao a, 01 H a► a$ at Ch yr a1 M rn M CA 01 CA a1

u1 % N M O .-1 v7 t` -:r r` r-1 M W "4 r- 00 o^ k %o r` rl% W %9 n r~ n rn %0 W a O O O O O O O O o O o Q O O C;

in zx h. tT a\ .^ ,-i C in in W r V,7 Oq N O 0 M M N N r-4 r-r r-i bG r1 O .-1 +-1 N •N +-1 r-1 •-d .-^ .J r-1

qN n n %D G 00 0000 at 00 M v1 cn a% 000 000 000 % ', N N N N N N N N M N N N N N N

M N in a1 Ln co O in to -r a ^o -* W r! 00 0 -7 W M 00 -T -7 D N Ln M N d y H .7 a1 r. N o0 od W O co W o1 n r-1 N M N N N 01 H 0 in O M 00 LM 00 01 ,* ai r. n D\ a1 O O rn oo W ao a0 ao ao 01 CT ^

m 0% 00 N 01 O 01 ON Q • q1 00 a1 r-1 r-i H O rW-i ko % .-r N r-I r-r .- r4 r-I r-1 0 0 o q c7, a q 0 O a Q, a o 0 0 CO A -7 M W to O u'1 N r` .4 u'1 r"-I O in N co N' N O N O C O o0 Ln r, N W cn O a N M N (q N C4 N M N N N N N N N Ely 1-4 r-4 p4 r-1 r-i r4 0-4 • r4 -4 r'4 W-4 0-4 r-1 r 4 r-1

M O -T -T %0 M W W M M N -7 O r-i Ln N OC-4 01 01 14 .4 -7' Co 00 -7 P4 4 N 00 M cn W u1 "4 -7 rY N M M ^7 -7' -7` ',7 .T ^ •-i r-1 ^ r-/ ri r- / r-i r-r ^ r^l r-1 •-1 r♦ r--I r•l r

N 00 rl ra rl W 0 in 01 U) N r- M In M W N 10. r-r -y .-1 n f- t` n 1`r f H tV N N N N N N N N N N N N N N W co %T 00 to o M O 0 N 4M M to M r1 N rn M cn W 10 O N -? 00 r , .¢ in r, co ti-1 `t M +;Y V1 -Y W u^ V9 ^7' v1 f` f1 10 ^ rn 1r1 -7 -7 CI r-r M -t Ln N M -^ 00 O .7 10It h r^ 00 a -.4 1 O O O O O O V N .T ,7 Ln Ln in► W C/) r/ r-1 r-I 04 N N N N 04 N N N N N N w

31 x ORIGINAL PAGE IS OF POOR QUALITY

{ r

a i

0 06 o, a; H rn o, v►

w w a t oN w , a o 0 0 0

N t+1 .t ON o0 in .Y cr1 .4 1; 1 .4 O .°or ON ai onp x iV N ^1 O '

in ON rti Off► f i4 O 1 ' •' 00 N O .-1 H rl O U `Vi H p kb co ^ O b0 00 01 0p rl

f O M rrl r-1 C! s,pa o o c o -o N 4ctn tn.-1 ^O G1 c+J wt N F*W •-^ .-1 r-1 O ON bL In r- a0 .^-+ P4 O W 9-4 A r + ^^O n Y S 1 . • ► M 0 H rJ r-t N © n

X17p N tp "i LA Ci il! •y ri p

^p N 6 C14

}

sAkrnr....^..^...,...^.._,^._.....^..._.^...... __.._. ^...^...... _,...... _...._...... s __ar... ^ _y_m... ._^..^..^...Y.,.,.,.i_^..t,,.^ .^.. _,.a ;1.r^,^,:^.._s_3.,..^...... _4..._..,.._ __ _.. .. _. _ ...... , . a

ORIGINAL PAGE 19 s OF PCIOR UALITY

N H N ti} iti a 117 M ^}.• i • • x^r! . . ► tom 0 vi M ci •d' M My °rt nm7

Ln 00 M 1G tT ct' h+ r4 1`. h M rn it t-1 Q1 C1 C1 I17 O tD N ^•)tY'^ tLi N Cil O a rn 00 co 06 rn Cn 00 rn m ao ai 06 rn

rt W-4 m co is h M h r. h tr Ln .t cn r. co 0C,4 to Lo ►^ ao w Ln Ln Ln to h r• r , . . • • • • • ► • a o o O O 0 o O a o 0 O c^

wr O O N w a% -1 w L h O N CN O O tD H c l0 r-1 ►Ln iD Ln f`r c!' C! r-1 ^-i H G' 1 X H r-1 H H H O r-4 r-i H ►

p m at o M w O Ln O p Oct W N co h M h ID Cf^ tQ r-• W w rN. C U ra • • ^0 N N N N N CV t4 N N N N N N d r ., to .t-- °` M ON rn Ln OLn 0)00 hLf? N Al00 M00 M H00 4 I G H Ln M • • r p Lf O Tw O . ^ 9 a. •r rL7 r-4 '.4 G'7 M '.4 C^ O C5 C1 C7 O r-4 O ; C^ r-4 r-4 H H r-I W-4 M r-I H H r-L H

Hrte. t0 Q Kr CD 00 ^ h •cr Ln17 Ca 00 Ln Rr O M M O V N v1 r"` • '.^' CT1 00 h O n Q C71 C1 rH-4 r-I r-4 t ^ tD tG lA CO 1p Ln Sr 4f7 h 00 h In 00 f t^ O r-I M H f^I •-1 H r-1 r-4 ri H H t-I H C7 O O c 7 C] G G? O O O Q O Q

h N N CTt O0 ri CIl O h 00 H M O O C11 tD M Ln cr cr h lqJ' w 00 ^! N to H r-1 N N r-1 N U.41 HO H Hr-^ mr-I r-IM r-I6 riO r-1 H ri ri r-I H

M h tCJ M Q1 N 00 r-4 00 N I17 O Imo+ N cJ O Qt r-1 h st M h Cif N H h H tD M d' ct ay7 at sr •^} d' M d r Ln s1` C' r-4 r-1 r-I V-4 t-1. rH H N ►-4 H r-I H r N M h Ln O Ln O o0 -rt d' C7 M w Lo I-H tD N 0) 00 'd w 44* H Ln (-- N N N d) Cu N r-1 H N N N N N

r-1 CO N cr h In Im co t1^ h N M r' ON H at C11 s! CT1 Ln N 00 O' h d t0 cr " .. . •. r . . .. ,. i ui N N N tL7 in of L1 N S! ¢! tp t/)r din. et ^d tt ai' d' c0' et' st ^ et ^V' e1' t e •

ELA 00 r-I N d 0, M h Ln h O @ f. t " Lo ` Nr0 rO-4 rlO r-IO NCl ON NO ON MO OM O O OtF O

^f i ^= t s 3 3

pF po AL AG 1el R QUALITY

, • W r-i r-i CT dO m m to Ln N W M U") W) E • • • ~• t0 to U") M to r-4. C4 N d. m ^ d M M t+7 M M It N M M !^") It

M N h QO CO m N M' to d' to Ln C) h co LO b4-1 N N Ln Ln • 00 01 01 06 01 01 00 1-^ CT O1 Q1 CT C7) O C7C^1 cn O1 0) CT D1 0)

Kt Ln 00 LO to Ln w L[) 00 ko to LO to PIP a c ci o O 0 O O O O O 0 Ca O

I to m 00 .-; 0) 00 of ^ ^t to Ln M ao N a tp M to h h N h M md, N 00 N n h • • , . , . • ► j ri ri rl r-1 O r-1 . ri r-1 H ty-1 N r-t r-4

Ln N Ln O N d' ct ri N ri Ln 0) C^1 h h h N rl h to W 00 h O h co cu • • • . w ' N N N N c+') N N N N N N M N N r ^

Ln m Ln h M h Ln 00 h N Ln O d ' Q Nto Ln to d N d' Kt 01 LO r i Ln O N O S:fa i C)1 CT O ) 01 C1 1 O 00 O O 00 W 01 C71

v

t M ri O cn Lla ti d" 1, to h O h co co L 2• t N .N ql;t O Ln d to pct M N t-i Ln CT O m r. p tC1 to ct to 11) 1`. ch st to Ln tD t0 Ln r- cY Wt`tG q7 ^t ct d' e! et d' eh tf of eh d

r

g CV M CD H M h Ln to h m 00 Ln N Ln W) to tD tD to h h h 00 00 co Im O s ) O O Q O O O Q q O O O O O f

{ • 34 ORIGINAL PAC,, f; OF POOR QUALITY

• r\ M O r O t?' cr Ln Ln N N Md tr W • pp 1144 L[) 01 Ln u1 CO M tD 4 H la Ln 4> N cf ;t ct' Zr M M M M V cr Zr cr M ch

b ^ M w OHO CQ,,,) ^tD 0) 00 a CO H mko 4-1. • } ^ co• N^ 01 00 O Ln co Cn O 01 00 01 CO cn CO 00 00 00 OD C11 CT1 O O (-- 171 0) 01 0) 01 QY 01 01 01 01 0) 0) 0) cn

Ln LC) M M r. 00 r-1 M Ln tD O 00 cr tr O Ln lD 19 tD h. ua tD ua to Ln 911 19 19 19 19 m O O O O C^ C7 O O O O O O O O

ld7r-1 Il') t0 00 H O Q1 00 1[J O M H H O 01 d ct P, tD 00 1D w M cr to 0 I: Y O H H Q r -4 .4 r r H H H r-1 Q +

'f Q In00 CD t`- 00 N -d*M N h. N 0) Li? N co 0) 00 O 01 00 00 00 00 r-, 00 01 co co f`

L C,-, sus c'! C4, C` C s 0l c,; ,a :.1 V C4

.` r H d- N O M Ln Ln N r` r` rn to Ln r` M Q1 00 Ln N Ch -qt- ^ tD r, Ln O r, ° m o rn 0) rn rn rn rn C+1 rn rn N la H 01 rn r.yCl) QI r,-, C O N cr M In Lf) H cr H Q1 M N I`. O b V lD LL) In N l0 Ln 1 1 rl Ln 19 N q' O CO N m O H N N O 0) H O N M N H cl N E ri r H H r-4 H r r H r-1 r-1 H f 00 o rn rn a, rn ^ rn CO CO rn n rn r O r N r H H r-i H r r C H H H rA r C7 C7 Ca O O O O O O O O O O O

00 m co co N # Ln O Cr r-L H hact 00 N H r tD tr H C) O r r 0) cr 11% H Ln tD Ln O Li r-i V-1 rH-i rH-1 T-4 rrIq r-4 rN-1 rH-1 rH-1 H rH-1 H rH-i

O N O O C1 19 N O 1n OO 0) V L N V N r— cr N M m cr cY M CM M M M 4 d M y Q H H w r-1 r H r-1 r-1 r rl r-i r-i r-1 r r r I^ CV M O 01 r-i 1D tD O O O cr to co ra r-i O r-1 M tr tD Ln Ln cr L1) d N d' M Lo O F-- N N N N C.4i N N N N N N N N N

ON N O N Ln lko rmi r^-1 N N Ch Q tD •r N CttD cr ct trLC) d' th M cr cf ct cr L1) u) LL) r ^ t7 c! Mt cf rt d d'r oct Oct d'

r Ln tD 00 O r-i N M LC) tD H N M tD O C,4OO O r-i r-i r-4 r-1 ri r-1 e Ln tV (01 ^ N N ` CV' N N N GV N N N CV N f t

t 35

ORIGINAL PAGE {5 .f OF POOR QUALITY

• 01 rn N O

` N M M M M M

eN-1 ^ to Lo p

Fp cn 001 01 01 (

06 O O C7 O D O

I!' Lo h. M N LA o I CO CO to ^t m he i r-i V-i r-+ .-i ri o

co N m C co ^ r^-1 Z N N N N N p 1 - cod h e-i t} n 0^1 p ' LA b 01 00 C6 O 01 H C1 n A C to t` t0 r-1 tY N O Qf• F , O 00 01 O O e•-1 t

t I O N N O O O O A O p

CD Lo N 1.9 to CD O ^ ^ m Z Li 1N-1 rN-1 O•

O d N N r. ^r O Ma C"! p to Lo

k 1- N N N N N O 4J R p rg t0 ^ g i ^ m ^ ^; 4 N 01 ^"^ O C 01 f\ N C. to tt ct ,_j O r N ru- O 0 3 ,; ^ ro 11 d L 4Jp G •„ t(a Q1 1-- N N N N Q> V) It th

f

_ zu,__-'ex.,. "t .....,..:..t ...... _,. } • u rxec^i.'^x....r+"+.w:rL ..i/ aru'.>zu>cam..e•...r.t..,- - xa. a._.su,._-.!raakmsd:^u'i:+'eorA.ti+'iadb::ds=:mrlNatYacw....YU a. .uc.e.tn.__...,.. ..m...... _ I^ 3 6

ORIGINAL. PAGE IS ~ C `n QUALITY OF POOR ^ N

V4 co

t ON ' ON ch / Ch • a% ^ Ch 01% CI

^.S V `

N l q-4 0 ^° ,^ a o 0 0 © o A Q1 00 0N N v^1 ^4 ri r4 14

I 04 No 00

Cd i ^ U1

O ti co 0 Ed Pq U ^p .-1

' `D p Q;p • N O 1%0 I^ Q bb C` O A eV-4 rrq ti,- ^ ra

a^ •,^ o p O O p V]

r' p ^r1 N i N ^ a^ N O ,y rj cd w .-4 .4 v-4 + 00 o O N C\l co O I rq O 4 w a °^ r j 0\ N • + to ik H N N .-1 N N A _O k A^. . N. fif /1 Nn ^V ^.W, 4 N N o In u1 u^ , cN x f, W p r-1 p f ; 4J -H

E-4 cd ^ O ` p p H Ul W N c ?f q y Aq N Q O Ty.

i ...,s .... .we._uxu

37 OlkG,INAR • ' Q^pUTY OF pOQ

009E

0 0 0E 4 6 cd N 0' i► 9

Ns 0'85 N r0 4 O ri H •ri is N cc mC ool

M ^ 0 ' SO 0. °1 ^ 9 44 -JJ- 0 C ^` z 14, o a^ 01 ire N Qy' m m m m L9 m @ m ^

(a N 6 C I N 61 > cd

OZA + 02UN ^ +^ N N td U

N U) cad .a +3 O •r+

w N P N L) 4 N U () td .N U) U) N N +a N 4) -ri (1) •A •r4 ^ •rl N (N CO) U) a N O cd 4) V 0) -H 4) +J 4J l; +3 O 0 0 4) G+ ^ N +J •-A +^ 4) N f' -H -r4 -rl •r{ -rl - (D •rl ^ P. +^ a V .r4 P —4 .{ -) .r{ ^4 4) -4 N r'1 e-1 r-( P-4 -N t-1 •ri •r $ • J4 'T) ?^ >) U) --4 Z r 4 N O p •ri (d a) O O 4) -rl O F-4 r-4 ^,, 4 .9 a d M nS d F •ri cd v4 C Z4 N ^ C OnC U ccV V ^ NN 3 U d^ c roC ^cUd aa)4)44)-r4 4 4)4 44)iN4 c'd .^ ,c) cd A b a R, 9: a tom. N +) +1 +j +a m

c^ a Z as 'i4 P $4 .r.. a► { Q W t l^ al0 V' fK H E E-4 E-4 tf. 38

The basalt flow samples were then divided into alkaline and subalkaline This is shown in Figure 4 using a plot of Ne- Q-01 normative compositions. The two samples that plot as sub- alkaline correspond to the samples that are shown to be basaltic

andesite in composition in Figure 3, It should be noted that seven samples plot in between Poldervaart's (1964) divider and

Irvine and Barager's (1971) divider. These samples contain small amounts of normative hypersthene and can be plotted as subalka-

li'ne. For the purposes of chemical classification, these samples

will be cl'asssified subalkaline based on the Irvine and Barager

(1971) divider. The alkaline samples were then plotted on an

4 Ab'-Or-An diagram (Fig. 5) and were shown to be predominantly pot,assic fin nature. Figure 6 shows a plot of normative plagio-

clase composition vs normative color index identifying the al-

kaline samples as predominantly alkali basalts bordering ankara-

mite in composition. The subalkaline samples were plotted on an

Al 2 0 3 vs normative composition diagram (Fig. !) and were shown

to be high magnesium tholeiitic basalts. The phenocontempor- aneous eruption of both tholeiitic and alkali basalts is Simi- lar to volcanism reported in other areas of the Rio GVande Rift

(Baldridge, 1979)

The trend of the basalt flows toward an increase in iron

with a corresponding decrease in ` magnesium is shown in Figure 8_

The normative mineralogy of the volcanic rocks of the West Po- trillo is shown in Figure 9 and shows a trend from low hypers- these to an increase.in normative nepheli'ne.

39 ORIGINAL PAGE IS OF POOR QUALITY

01 i

IRVI1, Ay0 BARA(.E411971) + DIVIDER

+ ' + # j + + + +^, t + + +v + + i 1 P p lDf RVAARTS 119441 k * ( DIVIDER i

t ALMA LI N E SUBALKA LINE

Ne 0

F igure 4 Ne-Q-01 projection, alkaline versus subalkaline plot. Note Iloldevaarts(1964) +dividint, plane for separating tholeiitic and alkaline rocks. Also Irvine and Baragers(1971') proposed dividing plane. Plots in percent cation equivalents. (after 'I Irvine and Barager, .1971) {

w

_ 9 .0 _

40

ORIGINAL PAGE IS OF POOR QVMJn

An

SOOLC POTASSIC

Ab' Or Figure 5 Ab'-Or-An projection, sodic versus potassic series. Note Irvine and Baragers(1971) dividing line between the sodic and potassic series. Plots in percent cation' equivalents. (after Irvine and Ha ra^,er, 1971) ti E f

M

r r . ------v^-A h

A/ 1

3 ORIGINAL PAGIZ IS OF POOR QUALITY

-- I 80 t Picrite - basalt 'Y ankaramite0 alkali basalt 0 .+ trachy basalt

t I ^, tristanite

0 trachyte 80 4 NORMATIVE PLAGIOCLASE 0 COMPOSITION

1-1 igure 6 Plot of Normative Color Index: versus normative Plagioclase Composition. Plots in percent cation eauivalents. t (after Irvine and Barager.r 1971)

q

t'j

{

i4 S k

nt , A 42

r

ORIGINAL PAGE 1$ of POOR QUALITY

26

22

12 av M ON

14

10

6

• ^4-- NORMATIVE PLAGIOCLASE COMPOSITION FXgure 7 Plot in wt, percent Al 203 venous normative Plagioclase Composition, ote I the dividing line of Irvine and Barager(1971) for cal.,o-alkaline and tholeitic fields. (after Irvine 'and Barager, , 1971) r

x to

ORI OF w

t: ORIGINAL PAGE IS 44

' OF POOR QUALITY

x

M

,V W ti Iwa 0

At

s b w

{y^

•i o y

` ^ 3

• 0 • W P4 • i

s ell 1 0

3 0

w

CN •^ W _ GA ^ ^ yy ^ t T Id 0 H

0 k CD k! O C

^ n.;.

f

S

i 4i

t ` f t

- ... ^. ....^..,...... ::.c^X,..».....uN...i.. ,^r,.^.ywf.r .. .t,:.^. .,&sJ ..:iituo- •'W Chemical Variations

The alkali -olivine basalt,

field were divided into two members based on petrography by

Hoffer (1976). The author completed 75 new chemical analysis

of the West p otrillo basalts and divided them into Members i

and 2 based on the petrography described by Hoffer (1972) and

Hersch (1977). The results of these analysis are reported in

Tables 4 and S. The analysis show an average MgO content in

Member l of 8.67% with Member 2 showing an average MgO content

of 10.43%. This supports Hoffer (1976) in his statement that

Member 2 has a higher MgO content than Member 1. It should be

K noted, however, that a considerable overlap does exist in M90

g contents, between the two members.

Member 1 has an average solidification index of 34, and

Member 2 has an average solidification index of 39. The solid-

ification index decreases with decrease in proportion of liquid

remaining from differentiation. Values of SI less than 35 are thought to result from within crust differentiation of basaltic

magma, 35 to 40 imply little or vdno differentiation, and values

greater than 40 suggest accumulation of olivine crystals (Kuno,

1968; Renault, 1970): This suggests that Member 1 and 2 are

only slightly differentiated.

Mineralogical vs Chemical Variations

A discriminant analysis was completed on the alkali-

olivine basalt members to determine if any relationship exists

between the petrological divisions and the chemical_ analyses of r _... _ _

i • • ; ♦ • • k ♦ ♦ • i f ! ♦ 1 ORIGINAL PAGE IS .w OF POOR QUALI'F'Y

• M

• rP t

'

• N r i It r.y

1 • ow 1 • M ^J

.r 4 t 1f ,.. M 'Y rw w •

PO PO O'd V4 ro j l^ t1. C'J N N ^y w w r w• w ^ '. ~ X ► Cv N • ^+ .-1 ^.y M N ry • r'1 J ^ 1'7 Cr N N M w • N *1 ^ Y r-+ (^ N ..+ M M w i N rr 1: O 'J pi NN N NNNIVNhN • N i •t ^» N N N N N N • N t'3 ► • [ N N N N • N fC cl O {+1 V NNNNNN(11N • N N w M ' lt' Cat`J'^NCjNN NNN - - • N ^ •'^ -' rrt'JNNNN • N ? Jet 1t Q1 ►C) N N N N CJ N • N .J N 1 1 M + •+ D N N N N • N f 1 • Q•► O u J tv NNNNNNNNN • N M •+ ^ ^! ; V at N N+ N 1'J G .+ Cr I.: • f u N I W }^ ►- r^fv NNN'v • N U I - ^ ..t I. CJ N ^ ^ ^ I IJ. ,^ •^, c,J o in V • N M 1 J ,q r- 4 • N V 1 N V t j c N

N m I r N a I u c, ♦ N 1 u • N ^ • N U ^^O LL ^0 (? ^ i • N ;i N w .b • • 4 I f^ 1 u U V1 N L k r • N N u • N Fr • N J 1 If • N n I O s • N N I w LU

A e N v A z 1 a y U © cx ; .. f a N

L' V ' v LL a .^ N {L, ►. U J 1 Z X U IA. uJ ^+ •¢ i v 1 w w

t 1 u L U J 1 ^ a 7 w CL

LL-:7 . ' W 47

11

the members ("fables 4 and 5). The analysis showed that MgO,

CaO and 'i'10 2 concentrations are the most powerful discrimin-

ating variables between the members. The results of this

analysis are shown in Figure 10. The division of samples into

Members . 1 and 2 based on the petrography can be supported by

the geochemical variations up to 89.3% accuracy of classifica-

tion.

Volcanic Bombs and Dike

Two analysis of volcanic bombs and one dike were completed

(Uble 5). Both the volcanic bombs show high concentrations of

MgO and t he basalt dike a lower concentration.

Feldspar Megacrysts

Introduction

,'fifty feldspar megacrysts were chemically analyzed by

x-ray fluorescence (Table 7). The samples were selected for

x their size, exceeding 3 mm in length, and their lack of any ;^ a remnant pieces of basalt matrix or excessive weathering (Appen-

dix D). The feldspar megacrysts were classified according to

` the classification of Muir (1961).

s Classification

Normative Or, Ab and An were calculated for the 50 feld-

spar megacrys^s and plotted on a standard Or-fib-An triangle

(fig. 11). The megacrysts consist of andesine, oligoclase,

potash oligoclase, limestone anorthocla$e, and anoMthoclase.

The majority of the megacrysts fall i nto the anorthoclase and

.^ .r .. ..:..^$.a msca..^t:k i+s`—Nmeri,t u. ._^. .e .. .. ., ♦ .. ORIGINAL PAGE IS OF POOR QUALITY 48 .I

'aG 00 M M O O M ^O M O tiD O N m o Potash 1 ^0 0 .7 M o 0 w ^0 ON W m rn ,-+ ^D M O N 0 0 0 N n 4 W N 14 to O Oligoclatie N cn r` "4 •-4 r-1

An- Ln .-+ 0 h o 0 m o 0 .. M o h 0 orthoclase N 0^ m o o h ao Ln rn r^ M h ^ o .-+ 0 0 o r+ W N ^ ^D ^ W o ^n ^D N O^ h .-+ ^

O N 01 u} O .-q •-r Ln N Ln h M O Potash

An- C4 •7 N ko .T O N h m to m oWD p ra OrthoCl$s@ 1 W o M .-^ o o r. .-^ r o 0 IT O .- O O O .-f W cn 0^ h .4 1-4 N y ^D , ,^,. _...... «.. CO { .4: Andesine li kD O to M O N p 0% ..+ r1 CA CA f-1 I p . . . . • . J Q O o O 1 tr) .-^ W O N 0. 0 ..vC N m ^ a) W 44 ^ -4 .-4 h O O W kD N r- .i %D m O 0 orthoclase ^ i N O O O r^ N CT O N r, to Ln -^? O ,-i 0 O O ^ W N as . f h 00 O .H ^0 N m h .-i .-d En M _... X71. ^C Lime d' %D rZ, r` M O N %0 %o N N N M to O An- W v N N O O W ►n N Ln M Nt N o g o o ^4 1t C4 W; ^i ci o ortho clase N rn

o m w H o N h o o r-4 o Ln gn o 0 0 N 0 co •-+ o .P-4 o rn .-+ s .-4 M 0 o Oligoclase 1) c rM-1 O O O O v1 n .-r 11 .1 ^ OaCll A ^ N W H 0 m An- U "4 .4 N h O O .t .-r w N c, N 0 00 Orthoclase N O N M o 0 O CN N O ko N p • M .-{ O O O O N 9 t" 1 O O OCD N ^ 0 0 r

An- d h .-4 %D rn 0 .-a .7 cN M ^o Ln r` o 0 0 O N O O W N .-# N orthoclase 1 O 0 a o -4 r- cn m o v to N M m N Co

u

al N

N N O O Co `! .^ 0 v O N N O O N O +.+ .c^ N u p; 9,4 M3 W H t++ iV Z H it H it r

i Lime p 0 .-1 O 'O . + ^ N n , ^ o { ,7 ► O - - 'p M a o .-+ ao .-+ ^ O a orthoclase ,p Cr,N rn r

An- Nt N ^D ON n %D o o O o O 1n N m co In M A ,a orthoclase z '° '-' N . . + 4 O O O O 4 4• N ^ r. O t ^ N ^

N N n o CO M 1 %0 1^ N O 00 O Andesine •000 O t` 'T O O * O .-i en O •-1 00 ^' O O 4 O O O t1 9 .4 0; 1r 9 9 O 01 %O N rl

N N M C O ^O M M r, M N %0 O r-1 M ► O %0 O I` N ^O .-1 r pligoclase ^' . O O O .Y . o c'1 O O ^t O O O 1; CT 14 C^ ul M 0; O ^O ^D N 01 f\ r-1 ..1

0 r- 14 m to O O O Ln I CO M M.t 0 N O Ln r-1 © O O Ln N 1^ 00 O • _4 + v An- m C4 o r1 O O N CTS N GT1 O orthoclase N ^ R

m 0 a% ^O O %0 00 a% r_4 CO m 4 aN O r-1 N r-1 . An- pG, .7 O' ^D O O O CO N ^O .7 M p o N o 0 0 I• m h rn p H orthoclase %0 % ^

Potash a o N N in O Ln M N M .-1 n in n O I "? 0 w •-1 0 0 %O al ^o M m ^o Oli 6oclase .., N M O N O O O N Ir .4 00 ^7 ^ 4 M O ^O \O N 01 1`^ 1-1 1-1 1-1

" o 0 0, n o o t m m o %0 00 a O Lime 1 .-1 O n O► O O .-1 +O m 1^ .4 00 ON N c An- O .-+ O O N r. N ^ ^^ O O orthoclase 10 ID N

H o r-1 .-1 r` o .-1 1n aD ci u1 0o in r. o Potash O O M ^T O O o0 Ln r\ ON m O a% o Ol ^eoclase NI M O N O O O N 00 r-1 00 v'1 O M O w %O N a% r- 0-1 ­4 ­4

1 O 14 in o m ^O %0 m I r-1 w N An- ^-1 9 Q', I 01 O O N O O OQ S'^1 00 M O 00 C OrtYlOClaS@ 04; M O N O O O 4 00 N 01, 1 ^O CT O w ^O CV O1 f^ ,.1 rl

i

N N O O O N Tj u { N N 1.i A 1a r o S O O ,,-.{N O O O o twig H 6 ;u U Z :4 N * * H a ORIGINAL OF POOR QuAl.11'Y

An- co r.+ in Ln o N o r- 0 00 o ^.o 0 PO O N O 0 h .t 00 M N _T M 0 orthoclase %Di. ^ O O O O 4 00 N • o8 o N ^ Ln r-1

M O %D .t M f` a% 0% ON M O Potash i o 0 w o 0 o 0o M %0 ^ r` M. Oligoclase O O O O N 9 1- ^ O CCD) n C4 N ^ 4

Lime w ^ 0 c`i o0 0 o c`^ o Goo f- M o o 0 u'1 M O N O O D N CC N 01 14 1D 14 O orthoclase N a^ ►^ -, .-, .-,

to N c% u1 O Ln r, u1 u1 .7 M O Co O An- , 0 O +-r 0 0 0 %D 0 M _T N r o orthoclase O O O O r-1 t` M '.4 0\ N 001 0

r^ .-d M M t)1 O O N kn m w 00 r- rn O iJ W N O 1t O O O h N. .-1 M r^ M 00 • Oligoclase ^ • o ra o M N o 0 +t %0 r4 M ^D n Ln 0 0 N M %0 N r1 U

rl N n O 00 ^O 00 ^O N iLt N N O ^"' W O ^7 ^t O O 00 ^D N a% in .t O Oligoclase i c 1 O O O O t^ .-1 N O 'Gl N .a

u1 M 0 Co O -0 N N C^ Cu N ^D N d U O O r- O H M r- .-1 r- .T 00 i • • . . c Oligoclase r O O 6 O O O u1 h -i 0 f` W u1 O t0 tD C14 Q1► ^D N

10 O ^o Ln O _oo O oo u1 cc .-1 W M O u^ 1 N 00 C^ 1D An- ^ n O O O O 9 n orthoclase _O N O O O -4 w M 00 r^ ^ t ^ M 0

N ^t u1 o O in r-1 m N O `7 'D O Lime 0 O %0 O O •-4 w ^0 M r ^D 4D An- i . . . o N O O O N r. N O ^ O orthoclase w^ ^ O ^ ^

M O O ^t O O 4 N st n N _' -o 1 O An•- O .t O O 0► M ^D N r. kD %D r. O ...... O orthoclase C;' O O O O 14 C0 N ^ ^ o N C

i^ P{

N N O O tad O 04 0 °cqES H H w U ," H 4C 4,C -M . ORIGINAL PAGE I OF POOR QUALIT

Potash ^ co N w o a^ a o rn rn o rn .-^ O , Oligoclase 1 n o O N O +-1 1^ 00 M N 1"! 1^ O O O O O .1 ^O r-1 00 C? N N

Lime 1• .-^ w oo a M rn M M o Y-1 ,-, a OI o o o o M o 0o u1 0o N rn 12.1 o An- .-^ M O N O O O N r- N Ca 00 00 N O orthoclase N ^o N a^ %0 ra .4 1-1

Lime M o m .-1 0 r L o N N 1- .-1 O •-1 O N N O .-1 in O 1 O 00 00 M Any 1. . o "4 Kt O N C7 O O N %O M 0% O O orthoclase N %D N w N ?-I •-1 ♦ s...,.w,.a...r.s.sn to+n.e:rw wwr.. ,...w^.....ew.rMwwewk M:..!+•^ w++"wr+,r:Xa .. a w.irsw,.'we ssv

Line % N co * O r- N %D %a 1-1 O M "4 O N N rwl O r` 00 M 00 An- O O W O. O O C; N. I` M 00 0o CT :O orthoclase N to N CM W -4 "-1 r-1

In N o o rn N n oo I` M o 1^ c 'p I 1 O ^ N O N N to M In '^ • Olgoclase r• . . + o v

Lime .R; ra O .t 1`^ O t` ^O to O O 00 N 0 Ln O ON O O O 0% N a% 00 00 M An- . o a +-^ •.t O •-1 O O O N W M 00 n O rwl O orthoclase N ^o N a% N .-+ r-1 tU

Lime q M r- O N O Ln o M M M ON M 00 O N O Co N O H r- # 00 ^T -7' 00 %D An- M . . O .-i N O N O O O N 00 N 0; r-1 u1 N O orthoclase N %0 N M 1`. r♦ r-1 ra

o to o co N r, oo Co ,-+ M n a Potash 1 O`O NO O O M O M u) M In , N N Oligoclas® ra o a. o o to kc •-1 0, N o g o N W N O's W .-1 N a.+

^D M ^O 01 O 00 ^ N .-I .y' ^ rn tD O I n C^ •"^ ^ O rl 00 N M ^ rj ^ ^-f Oligoclase O O O O M 00 14 0^ C4 9^ O N N s r Potash ^T N Ln Ln o m op .-+ T oo w o M o I OligoClaSB 1 O O% 0 O .-i n M In 11 1- O% M N O M O O O M 00 14 0T N 00 00 O ty 44 r! ri r♦ I

. a N N O O O to " H" CAA g O O N N O O O N O ,q w ^ y H * *O * v H rj PO4 2 EO ORIGINAL PAGE IS 52 OF POOR QUALITY

i i>a O N Ch .t O .t i- w m .-1 M 00 O O Oligoclase I In o rn N N O O O Ca u1 t` ..1 %0 ^ N w N O

^D r-1 .-1 I^ O 1`^ ^t .7 M M O -4 O C^ An- I 1r1 O r-1 r1 O O N ^D rn 1^ ^O n orthoclase N O O O O '.4 Co N1^ N C^ N^ O

An- In Ch O M f^ O {f1 N r-i orthoclase O• O O O O 11 00 N 001► C'4 1 ^ N N r~-1 O

An- W Ln 0 00 0 O r` 01 .-1 .-1 %D Co C,4 O O f N O O O O O O N N 01 N r- orthoclase . O O O O O r-1 1^ ^t N k N m %D N O

r, An- ^', N N -^r M 0 M %D ^U) Co %D n M .-1 I .-1 O O orthoclase 119 •-1 O o 0 V) ^ o r• 0) M. O N N b O O r, 4 k1 p U

M O O 01 N M n N O Co O f• Potash I t\ O Mt\ M O -^t Ln .-1 O CT .-1 U) M ry Oligoclase O O O C; N O N N CMV 14^ N

Potash ^, 01 r-i M N O r1 M +t 00 `4 N 1/S In O I O O O N i %D O 00 O ul Oligoclase N . O . C p t` M O M O O O M r• .4 a; o6 N o1 O N ^D N 01 ^D r1 r-I r-1

W O^ M M O O .t O .-1 O O O ON O I r` O M N O r-1 Ch Cl M 01 O Oligoclase, G O N O O O ^? r` ri W O N 0 ON N

V M -t O M -.t 0) ^D %D ^t O O I N D u1 -4 O O m O m Co f`, w .t I An- N . . . . . O Ln O ^Q 8 O 0 O C0 ^t I- -t orthoclase w N 00, N O r

An- C, 111 O I- in O Ln N M ^ r-1 ON - r• O O © r 1 O O N Co v1 x Orthoclase ^y M . N. O. O o0. O O .-1 n ^T Ln G N N O 00 N

C ^

N N Co O O' N N O pp O N O 4, w 41 Rpf O y H W z U x H E ". H 53

i It

ORIGINAL PAGE IS OF POOR QUALITY

Ln acn ai 'H

00 N .cy S'1 i-1 .ri 0 10 ^9rl U ^^ N d+ri

O -+ O ^^ O N N 'L7 'd dl lu :^ 1

M " ,I,

Ohl 0 ri O 0 X10 Q O's O Uw ^-14+ O -r W .r1 f: co (n • ,;^ O O O N Cri ^ -r{ O

r^.• O td ^1 +ri V (d'>4 :3 ti 0 -H

0 ri w

Cd ^., t^d r W p (n i ^ ;k a1 ri Sri

r \ O r^ 1 CD •^4 N ^^ •ri O (d rH cc w ^ 1 r i

st

_.-...Ua....,m,^ ,xi...^..,^^ .;.^..:..sasva.:arui,:,a,^{:r ^..sem..a •`c_.xJc...... ti x

l - l 54 ^F k P

oligoclase fields with a trend extending from andesine, oligo-

clase to potash oligoclase. No relationship could be determined

:r between location and composition of feldspar megacrysts.

Interpretation

The high alkali content of the basalt can account for

the presence of both anorthoclase and K-oligoclase. A Ortiz (1979) states that the normative feldspar compo-

sitions of the host basalt plot within the excluded portion

of the Or-Ab-An diagram. This indicates that alkali-rich and

calcic plagioclases could have crystallized from the melt and

co -exi sted in equili brium at high temperature and pressure

(Laughlin and other's, 1974).

a d

i COMPARISON TO AREA BASALT FLOWS

Basalt flows in the immediate area include the Black

Mountain-Santo Tomas, Aden, Afton flows. The Black Mountain- tt Santa Tomas basalts are alkali-olivine basalts. They are por- I' phyritic and hypocrystalline with phenocrysts ranging in size

from 0.5 to 2 mm. Eudhedral to subhedral crystals of plagio-

clase feldspar, olivine, and phyroxene, comprise 15 * to 30% of

the rock. The groundmass consists of plagioclase laths 0.1 mm

in length and small anhedral grains of pyroxene, magnetite, and

light-to dark-colored interstitial glass. G1omeroporphyritic

accumulations of olivine are also common (Hoffer, 1969). The 1

Afton Basalt are alkali-olivine basalts, hypocrystalline, micro-

porphyritic, and vesicular. Microphenoc 'rysts average 15% and

are composed of olivine and minor plagioclase. The Aden Basalt r are hypocrystalline and microporphyritic with subhedral to eu-

hedral microphenocrysts of plagioclase, olivine and pyroxene set

in a fine-grained groundmass of subhedral plagioclase, pyroxene

and glass. Microphenocrysts average Tess than 15%, and are less

than 1 mm in diameter and commonly glomeroporphyritic (Hoffer,

1976). The Black Mountain-Santo Tomas, Aden, Afton basalts con r 3 tain higher concentrations of modal olivine than the West Po- {

trillo Basalts.

The average chemical compositions of the West Potrillo

E . basalts are plotted in Figure 12 on an AFM diagram, where MgO

SI. The solidification Index, SI, of Kuno et al (1957) indi- r C

55 56 pro r r cates the extent of differentiation (Renault, 1970).

Based on the Solidification Index the two tholeiitic

samples (209, 242) and the averagB Member 1 from the West Po-

trillo field plot on the AFM diagram with an SI less than 35

indicating differentiation of the basaltic magma within the

crust. The average Member 2 of the We:t Potrillo field plots

' between an SI of 35 and 40 indicating little or no differentia-

tion from primary basalt magma, and the flows of the Aden -Afton

and Black Mountain-Santo Tomas plot above an SI of 40 indicat-

ing accumulations of olivine crystals.

The lack of differentiation implies that basaltic magma

was probably derived directly from the mantle (Renault, 1970).

Differences in the SI of the West Potrillo basalt Member 1 and

2 could be due to the tapping from different levels of a differ-

entiated magma chamber. The Rio Grande rift is a possible mech-

anism for transport of the magma from the mantle. t 57

ORIGINAL PAGE 19 ne anno Al1ALIYY

i Z W Q'

Q

C

r, .rt

DISCUSSION

The alkali olivine basalts of the West Potrillo Basalt

field are classified as within Plate Basalts based on th clas-

sificitidn. of p earca (1976). This classification cannot dis-

tinguish between ocean island and continental basalts on any of

the classification functions, This may mean that the genera-

tion of magmas within plate may be independent of the nature of

the crust (Pearce, 1976). In relating these lavas to experimental

studies it should be noted that the lava is considered to be

representative of a primary (primatve) magma. A primary magma

is one that has been generated by partial melting of the upper mantle and was in equilibrium with a perioditic residuum at

depths of 10 to 80 km in the mantle. The magma must also have

been erupted to the earth's surface with little or no modifica-

tion (Ringwood, 1975). Four characteristics indicate that this

lava could represent a primary magma:

1) The major element c'riterian of primitive composition

is the Mg ratio (Ringwood, 197t; BaldMdge, 1979)

Mg ratio =100 (MgO /(MgO + Fe* * )) = 68-72

Three chemical analyses were taken from Hoffer (1976).

The values for FeO and Fe 2 D 3 gave an average Mg ratio'

of 67.8 and ranged from 63.8 to 71.4 (Table 8).

2) Die t~o the presence of mantle xenoliths and high pres-

sure xenocrysts (Ortiz, 1979), the eruption from the

source region must have been of relatively high vel-

Cg r f 59 s

as

Table 8

p-j*.

sio2 44.63 44.37 44.21

T102 2.6o 2.37 2.21

Al20 3 15.92 15.98 15.01 3.66 4.13 4.82 Fe 203 Fco 6.56 6.82 6.07 Mno 0.14 0.16 0.14

Mao 9.17 7.30 io.34

CaO 1o.36 10.09 10.94

Na20 4.70 4.48 3.67

K20 0.90 2.27 1.65 H2 1.60 1.90 nd P2 0.64 0.74 0.48

Total 100.88 ioo.6i 99.54

Mg ratio 71.40 63.80 68.20

60 +s

ocity which would allow little or no fractionation during the move to the surface, Also, little or no

reaction of the xenoliths with the host magma suggests

rapid transport to the surface.

3) Plagioclase megacrysts from the West p otrillo basalt

showed no zoning and using the Nash (1973) formula

R(kilo bar s) = - 0. 39(%An) + 34. 7

were determined by Ortiz (1977) to have formed at pres-

sures between 18.36 kilobars to 28.01 kilobars at

approximately 75 km depth.

4) Binns and others (1970) cite expertiErental studiesindi-

cating the tendence of plagioclase near the liquidou; composition to become more sodic at high pressure.

Warren and others (1979) suggested anorthoclase mega-

crysts in the Eagle Basin was less than 29 km. The

trend toward an increase in Na and the formation of

anorthoclase fit the trend of the feldspar megacrysts

shown in Figure 11. 0 11

The composition of the West Potrillo Basalt field ranges r from alkali-olivine basalt to olivine basanite (greater than 5% t

normative Ne). It is possible to obtain this trend by the frac-

tionation of an olivine tholeiite at 13-18 kb pressure or at

27 kb pressure with a magma with 7% water. This fractionation

`` trend is shown in Figure 13. At 13-18 kb pressure, correspond-

ing to a depth of 35- 65 km, the olivine field is largely sup-

...... a ..t. ... .,. .. x ^' ._..sJ.aY..uar:...w... ^^...... :...... :...:]P.. .«.ZS:tlSi,.w2e.m..i...3.9#.. ...a..i..:;...... _...., _...... , ...... I .. _..^ ...... 61 ,p P r.E 13 pR1G1NAt VAL^N a) H t: POOR c ••/ o 1-4 COF ••4 r C a) >1 .C* .4 U) 1).

:A N pt v 7 y 7.^ V. O t U •^ d G 1 0) 41 o XC ♦1 1:.) c•- ' c) C t^ .: c^ a t 1•i .^ , > v o .,...... l:^ O N •-/ r, r 1 (.3 t; 1. t: rj 4) .••1 U O (^ y N t4 v () • -• f t: ttpp > cc ^ N ^ d > N > ^R •i:

'U

o^ N a N v_ r. o •.. o ., C a G N C m 1 v •1 A +•-+ U ct N U +' t: 1 O r^ 7 M -1 r1 .C) •.^ t. at, 0 r•^ is N ♦ • U fi ► 1' G) N t+ W t) t: !i t.tJ

U • t^ ►a N U ^/ C3.

t: N W n ..t

^4j 0i` } r^ ^ o t^ L) N .1 C y (V•.1 C N3 C .-1 a+ N > ►^ W I^. a 0 rO ^+ m t. l i ) N N • 4 O ►: Y (I N U t+ 1^ 0 -V4 I Q) >) O 1.4 w a s c: O .L ^^Z Cx GJ •• 1 N 4) t: N a N il L. t.

r••1 = •i r-4 1 .H O Z t ••, ., t.. 'u

U E 4 )a N U W"N:t: U.

O .0

•I^t) 1 ;3 62

3 pressed, and crystallization is dominated by the separation of

aluminou,s orthopyroxene + subcalcic aluminous clinopyroxene,

The residual liquids fractionate directly towards the critical

plane of undersaturation and across into the alkali basalt

field, yielding alkali olivine and basanites with 5% normative

nepheline (Ringwood, 1975), If water (5-7%) is available in

the source regions of basaltic magmas, the primary field of

crystallization of orthopyroxene from alkaline basaltic magmas

at high pressure is greatly extended (Du Ititudeand Green, 1968),

Since high water contents in highly alkaline magmas frequently

display explosive eruptions, the addition of the water is plaus-

i ble. The addition of water q allows the fractionation to occur' under as much 27 kb pressure (Ringwood, 1975).

The fractionaly crystallization by separationof major

orthopyroxene depletes the residual liquid in S10 2 and enriches

it in CaO and alkalis. This chemical variation is similar to

known trends that are observed in mantle-derived basalts rang-

ing in composition from alkali-olivine basalt to olivine nephel-

inite (Ri'ngwood, 1975).+

The West Potrillo Basalts are associated with the Rio

Grande Rift. Evidence at the present time, both geological and

geophysical, supports mantle upwelling under the rift. With

.? mantle diapirism providing the mode of transport for the magma,

to the lower crust resulting in the eruption of the alkali- i f! i ol ivine basalt (Wilshire and Pike, 1975).

r^««^w .. ..x ...... n.n..,.

k A hypothetical cross-section of the crust and upper mantle that could have provided the environment resulting in the transport of the magma to the surface is sh y^, in Fi g ure 14, 64

ORIGINAL PAGE B OF POOR QUALITY

i^ 1 •O c J y^C N COO ' N a t+ ^^ 1 1 ^J +j fvl^ I 1 ^I N t a c ' ' M i. v► r _4 u a

wO w 1~ O N .-1 r c1

f 1 ^ Ir 1 Cr tj it• `t Iti "e

V •.1 ♦J .^O

vi C Y, 1 VON NBC`.9-- ON(ON

U O In ;' ^ , I * X r •1 l• W Co t~ > c) c9 + •Y, t • 1 • !` , F t v •^ W 31 O

i 1 1 c, o v 4+ i is r u ro

W 4) ^ I ^ t 1 #-I .,

.^ 1 • ^ 1 7 C: C1 ^ 1 1 1 1 ' i.t..d ^, 1 a ++ ^ 1 1 1 ^ 1 ,^ ►.cd dic Z

P 3 M

r CONCLUSIONS AND SUMMARY

^x 7 The West Potrillo Basalt flows are hypocrystalline,

microporphyritic to porphyritic with a microcrystalline ground-

mass.- Essential minerals that occur are plagioclase, feldspar,

clinopyroxene, and olivine. Accessory minerals include mag-

netite, illmenite, analcime, chrome spinel, serpentine, chlor-

ite, and calcite. Feldspar ,occurs both in the groundmass as

subhedral plagioclase laths and as alkali and plagioclase feld-

spar megacrysts. -Based on chemistry and petrography, the West

Potrillo Basalt flows have been found to consist of abundant

A alkali-olivinealkali-olivine and minor tholeiitic basalt flows. Based upon field relationships and petrography, Hoffer

(1976) divided the alkali-olivine basalts into two members: an

older plagioclase-rich member and a younger olivine-rich member.

Chemical analysis supported this division showing Member l to

have a lower MgO concentration than Member 2.

The West Potrillo Basalt flows are interpreted to be

t . the result of the fractional crystallization of a melt of oliv- Y.

ine tholeiitic composition, at pressure approaching 13-18 kb

and 27 km in depth. The megacrysts are interpreted as being

phenocrysts formed in the parental magma as stable phases at

high temperature and pressure. The composition of the magma

changed only slightly as it rose to the surface as indicated by

the only sl M ight reactionof phenocrysts with the , host magma. Also, the lack of zoning in the phenocrysts indicate a lack of

65 j7

C

compositional change in its route to the surface. This s

change in composition accounts for the small differences in the

SI index between Members l and 2, Which are interpreted to be

the result of eruptions. from different levels of a differen-

tiatin*g magma chamber. The embayment of the olivine phenocrysts

are interpreted to have occurred during the fractionation at

depth before mantle diapirism took place.

1

i a

i A P P E N D I X A

BASALT SAMPLE LOCATIONS

68 •

• ORIGINAL PAGE 19 OF POOR QUALITY

p W4 (Li ^ • i 7 w la ^ ^ ^ N H H 41 51e 'Jlt V] 2s Ai 3i as w c '^, a a a a a r+ a a a a a j

a w w H w a w M w w w w w Cl] u; ^1fp1 w CA to ^M MC; V] V] V^ C!^ U] U C . i 9 N ^ N M V cV cV a^i N N N c^i N Cn N t H H N H H H H to H H H F+ E-4 H ^ • ww w V w a w r w ^ w rl^* pw ( sp w .-1w Q p 1^^ N N M C I S 1 f'^ .,^-1 . G]! N 0.-01 0.-10, N N ^ c'^1

^i C.1 V V O vi^3 V V U w v t) U C) V ++^+r C) 41 41 GI a) d GI i;; d d Ga d +► F C!1 CA V] C1] C/] V] !n Cf^ C!) CA M M U1 cn w w w w r . w a w w N • ^c w g4 '4 .^. M M N ^ NN M N wl M M M N ^ N .^ .-1 .-1 cd N N i^ N N N N N N

W W W Gq 1 {'+^ W w 9 64 w W W W U w 1 1 1 1 1 1 1 1 1 1 1 1 1 p 1 C ON r 1 0p0 N ^ pp ppp vpp1 .0^1 ^.O1 N N N N N N N N N N N N N N cV

[i 4 «^...,...0 .... arawwxnkrfw3 tmx fu P•ac m . ^ •,,•...++A^»S^iwra'anc4"°m^^•mn+^an `.+^,.+^_. .: ..-.+•...w^,^.yr.ey-ywoyaraiwes + ^, .iho:wwe..,...r ^e_.v mbar... .:vw,...... _ _i.a....mc ax.. i.^l.ft vw,ar ♦wwa:Aae}eari"ti6;., ^d1r ai.a.... .cr.asr.x+Fiie.r 6r ^` .N._,,...w.i+4ae14'i."ufxow..n .w^.n iF,;:nix.. ^v,.x...N_..x' _,. .._ ...ii.. ,, .. r ... a

69

3

ONIGINAL PAGE 6,S OF POOR QUAL"

x i} e w a q N E--4 ul A z S • H ► N • . E cn tt^, a a a P4 ^Pr trc l P4 PSGr ,,i y H G4 a a cz • w ('^ w • w w • i ^ • • •. w w w • ^y i C U opw d Vl ul ul o t'1 Va N !^ N N N N N u1 ►fl • HE.H H H H E-4 g H' H H H

. ^ ^ 'c^'1 .ply f 1 ^ C^1 N ^ ^ ^ Op QO M ^O ^ , ^ v v i ^! ri^ol' V V v V v V • V V • w

cd 4J v a1* .W4: .4s .+le '+Ir +d+ z ++1 +le .air W , .^^icr

M. 'M M N ^ p.. ^ ,, (^.. M ^,^p M M M M M N 43 f. ed , r C1 .-1 N N N N N N N

^. w w w w w w> w w w 04r74 a

^ a cy ^ N ^ M N cV N N N N ^ N N

T

a.HeM./^Ym^:+enn^+.^.n+m^-. . ^ •^n'vmrMwW+.si.+fo`sru.l+`fJKm^ KidxR^>.zY

70 ORIGINAL. PAGE 6s OF POOR QUALITY +

0

M a .9 N

Q N 9Q HN a c a a a a a a N c '^Qa a a (^ ^ w h w ^ w w w w • a H HN cVH NH 4VH NH cVH H HN ^^* NH C] + N w ^ ^ w ^ w w • w w .i+y^ Q! V

u°' c°'n rn v^' c^' i c i cn cn En' w w ^ w w w^ w M .t. rl^Jl w ais ^+Is .^: .fit .+fir air .^^♦ ^+Ir ^' 'Q* ^ *+I^ ^

^.19 cd N

J s •-1 e-1 rl -1 rl r-1 rl rl ri ^d 1 40

a ^c z a X: w

r w, w w w w w r-9.4 w' `^ w w r

N N N ht ^t N cV i F A P P E N D I X B

POINT COrNTS 72

m OF POQR QUALITY H

L 0 U O l9 O Q H O H H O 00 n SV N .-1 r1

^7 N N N-1 ri N H t^-1

N 110 VIN r4 rN+ -1 *V)1

.14 CN a^ o^ TA ^ V

0 N I P4 4-) p

4-). U) r N N N N 0^'1

Q F ':

b

Q

to Cd V,

U CO co N o W T-4l N oN o 5+ N' .-1 N .-i CV N r1 N ' _a

0

^^ d cu '^ E3 `' Eo N N0 CV0 N N N N N N N N b o

r .+ N N fit N_ tV e-1 H e-f H W H

s;

I

r ,^ APPENDIX C NORM CP.LCULATIONS

43 49 49 49 4

o o 44 ra w w

SAMPLE ai5 017 018 021 022 024 029

Q 000 010 000 060 0.0 0.0 000

C 0.0 0.0 010 0110 0.0 000 010 Or 6.17 $.99 9.41 6.78 7.73 4.03 7.05 Ab 17.86 21.97 7.57 7.o4 8.51 25.20 14.84 An 25.47 25.94 20.73 22.63 23.72 24.72 22,08 La 010 000 010 010 0.0 0.0 010

No 4.61 1.79 11.01 10.86 ?:32 0.0 5.42 Di 20.77 20.00 20.36 32,87 23.05 18.76 23.13 Wo 10.39 10400 10.18 16,,4 11.52 9.38 11.57 Ern 8.66 8.22 8,86 12.58 8.90 8.05 9.59 Fs 1.73 1.78 1.33 3.86 2.63 1.33 1.98 Hy 010 010 0.0 0.0 0.0 0.21 010 01 16.58 14.73 21.91 8.65 18.48 18.97 20.13 Fo 13.82 12.11 '19.05 6.62 14.27 16.27 16.68 Fa 2.76 2.62 2.85 2.03 4.21 2.70 3.44 Mt 4.02 4.A4 4.22 5.01 4.31 3.89 3.58 11 3.26 3.77 3.54 4.53 3.64 3.09 2.67 Ap 1.26 1.37 1.25 1.63 1.24 1.14 1.10 Cc 0.0 0.0 0.0 0.0 010 0.0 0.0

TTT* 27.9 28.1 26.3 22.3 23.6 27.9 25.9 ORIGINAL 'PAGE19 OF POOR QUALM 75

APPENDIX 0 NORM CALCULATIONS

+9 -r4 d 44

rn ^ .i ,5^ a^-1 0 SAMPLE 033 037 038 043 045 047 050

G4 010 0.0 010 0.0 0.0 0.0 0.0 C 000 0.0 060 0.0 010 0.0 0.0

Or 8.92 9.78 9.07 9.91 10-55 8.29 5.54 Ab 12.91 16.92 10-00 18.73 14.02 11-71 24.82 An 24 .32 21.229 22-54 24.22 22-79 19.65 25-52

70c 0.0 0.0 0.0 0.0 010 0.0 0.0

Ne 6.81 4.90 8.63 4.11 6.48 7.67 0.0 Di 19-55 t6.2o 22o20 18.24 19.2.7 25.47 16-33

jjo 9.77 8.io il,09 9.12 9.64 12.73 8.16 En 7-76 6.81 8.92 7-37 7-58 10-57 6.20

Fis 2.01 1.29 2.17 1.75 2.06 2.17 1-97 0.0 Hy 010 0.0 0.0 0.0 0.0 7-24

i I 01 20619 22.15 17.5i 14.92 17.68 18.88 10.96

Fo 16.04 18.61 14.o9 12.05 13-91 15.67 8-32 13 Fa 4.15 3.54 3-43 2.87 3.77 3.21 2.64 Mt 3.55 4.12 4.57 4.52 4.20 3-82 4.31 2.63 3.41 3-97 3-91 3.49 2.99 3.61 Ap 1.12 1.23 1.53 1.45 1.52 1.51 1.68 Cc 0.0 0.0 0.0 010 0.0 0.0 0.0 30.2 25.7 30-9 29.2 26.0 28.6 TTl* 27-1

Mornton-Tuttle Index ORIGINAL PAGE I5 OF POOR QUALITY ` 76 # A, . n

APPENDIX C NORM CALCULATIONS

d

pi ow ao c SAMPLE 052 053 060 o61 o63 065 o66 of 4 o.o 060 0.0 0.0 .0.0 0.0 0.0 C 010 0.0 0.0 0.0 0.0 0.0 0.0

Or 9.89 7.92 10.00 10.16 4.62 9.83 7.69 Ab 18.48 23,33 20.92 15.48 21.75 12.68 0.0 An 23.27 25.14 23.91 26.6o 20.12 27.37 20.40 Lo !:O 0-0 O.O 0.0 00 0.0 0.29 NS 3.8o 0.89 2.37 2.74 3,74 6.85 15.08 Di 16.46 15.12 15.96 13.62 17.46 19.36 37.18

Wo 8 . 23 7 . 56 7.98 6.81 8.73 9.69 18.59

En 6 .51 5.66 6.22 5.78 7.72 7.86 14.31 Fs 1.72 1.90 1.76 1.03 1.01 1.84 4.28 Hy 0.0 010 010 0.0 0.0 0.0 0.0 of 19.24 20.07 18.10 23.39 23.42 14.33 9.68

t Fo 15.22 15.02 14.11 19.83 20.72 11.62 745 Fa 4.02 5.05 3.99 3.55 2.70 2.72 2.23 Mt 4.15 3. 65 4.10 3.88 4.24 4.43 4.48

x it 3.43 2.75 3.35 3.07 3.58 3.79 3.84 Ap 1.28 1,13 1.28 i.o6 1,07 1.33 1.36

CC 0.0 010 010 010 .0.0 0.0 0.0 f Trz* 30,.5 30.7 3117 27.3 28.7 27.5 2o.6 ^ E 1

e ORIGINAL PAGE IS n .t f OF POOR QUALIFY 77

APPENDIX C NORM CALCULATIM

^4 O o r. 9 pa

SAMPLE 067 070 072 073 074 075 076 #

Q 0.0 0.0 0.0 0.0 0.0 0.0 0.0

C 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Or 7.62 8.59 5,96 8.63 12.25 10.27 7.89 Ab 21,13 15.30 0.0 16.44 22.91 24.41 11.86

An 25,35 22.21 21.57 24.74 23.43 24.58 25.73

Lc 0.0 0.0 3.59 010 0.0 0.0 0.0 NB, 1.99 8.17 14.25 4.95 1.17 0.0 7.06 Di 17.14 I 20.32 38.67 18.99 12.95 10.64 19.25 Wo 8 .57 lo.i6 19.33 9.5o 6.47 5.32 9.63

En 6.53 8.27 14.64 7.58 4.94 4.14 11.66 Fs 2.04 1.89 4.69 1_.91 1.53 1.18 1.97

Hy 0.0 0.0 0.0 0.0 0.0 1.16 0.0

01 1798 16.00 8.98 15.86 17 .65 22.09 20.52

^a Fo 13.69 13.02 6.80 12.66 13.47 17.20 16.32

Fa 4.29 2.98 2.18 3,20 4.18 4.89 4.20

Mt 3.97 4.44 3.53 4.76 4.56 3.30 3.63 3.19 3,82 2.61 4.23 3.94 2.31 2.75 K ,f 11 Ap 1.62 1.16 1.56 1.39 1.16 1.23 1.31 f ^^ Cc 0.0 010 0.0 010 0.0 0.0 010 29.1 30.0 20.8 28.2 34.5 330 25.3 TTI* t.' 9 r AA

r p

ORIGINAL PAGE B UJ 7 8 OF POOR QUALITY

APPENDIX C 11011M CALCULATIONS

Q .^ T d w^ +4 ^r

c o ^i o SAMPLE 077 078 081 082 083 1 084 085

4 0.0 010 0.0 0.0 0.0 0.0 0.0

c 0.0 0.0 0.0 010 0.0 0.0 0.0 Or 8.36 12.60 9.22 7.75 7.56 4.47 5.58 Ab 1244 15.75 0.08 9.48 17.50 25.45 24.97

An 23.92 18.59 22.81 22.71 23.39 23.47 23.65

Lc 0.0 0.0 0.0 0.0 0.0 0.0 0.0

No 6.96 8.76 7,28 12.43 4.89 0.0 o.84

D1 19,98 18.40 22.30 29.16 22.74 19.27 20.26

Wo 9.99 9.20 11.15 14.58 11 .37 9.63 10.13 En 8.31 7,32 8.94 9.54 8.37 7.55 8.27

F3 1.68 1.88 2.21 5.04 3.00 2.08 1.86

Hy . 0.0 010 010 0.0 0.0 9.82 0.0 01 20.27 17.45 15.19 8.76 15.37 9.07 15.73 Fo 16.87 13.89 12.18 5.73 11.32 .7.11 12.86

Fa 3.4o 3.56 3. 01 3.03 4.o6 1. 96 2.88 Mt 4.o8 4.02 4.65 4.52 3.99 3,94 4.28 11 3.35 3.25 4.o8 , 3.88 3 . 20 3.15 3.6o

Ap 1.04 1.18 1.39 1.31 1.35 1.36 1.08 icc 0.0 0.0 010 0.0 0.0 0.0 0.0

TTl* 25 .8 35.1 27.6 26.8 28.0 28.8 29.8 ORIGINAL PAGE J OF POOR QUALITY 79 f

APPENDIX C' NORM CALCULATIONS f

T T T M^ T. I T yp ^.

SAMPLE 088 088A 095 097 102 103 loo

4 010 010 0.0 0.0 0.Q 0.0 0.0

c 0.0 0.0 0.0 010 0.0 0.0 010

or 11.13 13.22 9.34 6.96 10.35 8.68 9.26 Ab 23.25 22.48 21.85 23.21 20.97 12.51 9.64

An 25.55 19.27 24.56 25.12 21.07 27.04 27.01

Le 010 0.0 0.0 0.0 0.0 0.0 0.0 No o.98 2.79 1.71 1.51 3.28 7.62 9.41

Ds 10.01 13.46 13.17 21.47 16.20 23t79 22.88

wo 5.00 6.73 6.59 10.74 8.10 11.89 11.44 En 3.70 5. 20 5.17 7.69 6.04 8.80 8.31

Fs 1.31 1.53 1. 41 3.04 2.o6 3.09 3.13

Hy 0.0 0.0 0.0 010 010 0.0 0.0

01 20 .23 20.64 21.00 11.17 19.24 11.61 12.58 Fo 14.94 15.94 16.49 8.00 14.36 8.60 9.14

Fa 5.28 4.70 4.51 3.17 4.89 3.02 3.144

Mt 4.07 3.87 3.89 4.83 4.16 4.11 4.33 I1 3.29 3.06 3.09 4.28 3.41 3.36 3.65 x t[ Ap 1.50 1.20 1.39 1.44 1.32 1.27 1.24

K Cc 0.0 0.0 0.0 0.0 0.0 0.0 0.0

`r TTI* 33.7 36.9 31.4 29.6 32.8 26.7 26.1 k, or., -Pam QUA04Y 80

APPE14DIX C NORM CALCULATIONS

4 .^ q9 43 ^ l .^

'y A w a o w i

SAMPLE 105 201 202 203 204 205 206

4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 C 010 010 0.0 0.0 0.0 0.0 0.0

Or 9.02 5.70 9.17. 3.87 10.32 8.40 8.48 Ab 13.24 23.88 20.57 13.06 13.31 12.47 12.19

An 22.62 22.26 21.39 19.23 19.89 18.33 19.20

Lc 0.0 0.0 0.0 0.0 010 0.0 0.0 6.05 6'' 3 25 o-a0 'Ne 1 w 1, c. . •. 7 -a 54 8a?. 8.: 69_. -.

Di 22.68 18.03 M O 32.03 21.99 23.30 20.45

xo 11.34 9.01 8.59 16.ot 11.00 11.65 10.22

En 8 .69 7.31 7.02 12.30 8.94 9.50 8.79 Fs 2.65 1.70 1.57 3.72 2.05 2.15 1.43 Hy 0.0 0.0 0.0 0.0 0.0 0.0 0.0

01 17.00 20.47 18.90 15.67 17.53 2o.84 22.21 Fo 13.03 16.61 15.45 12.03 14.26 16.99 i9.lo Fa 3.97 3.86 '3.46 3.64 3.27 3.85 3.10 Mt 4.o6 3.88 4.40 3.96 4.31 4.oi 4.13 11 3.28 3.07 3.75 3.17 3.64 3.23 3.43

Ap 1.46 1.08 1.38 1.21 1.46 1.25 1.22 Y• a Cc 0.0 0.0 010 010 0.0 010 0.0 r 31.3 22.8 TTI* 27.0 29.8 29.3 27.3 27.7 E: ts UA07i 81 OF FWjj

APPENDIX C NORM CALCULATIONZ

o 19 w ^ Sow w w SAMPLE 208 209 210 211 212 213 215

Q . 0.0 5.07 0.0 0.0 0.0 0.0 0.0 0.0 c 0.0 0.0 0 .0 0.0 0.0 0.0 Or 4.49 8.45 9.97 10.85 9.46 10.12 8.15 Ab 21.88 27.92 16.28 17.45 10.48 15.03 14.02 An 2o.48 23.15 20.66 22.02 19.93 20.29 21.67

Lc 0.0 0.0 010 0.0 0.0 0.0 0.0 Ne 2.88 0.0 5.83 4.94 9.02 6.44 6.24 19 D1 .11 10 .95 17.79 15.79 20.29 18.34 18.31 Wo 9.55 5.47 8.90 7.90 10.15 9.17 9.16 En 8.34 3.32 7.32 6.18 8.44 7.4o 7.72

Fs 1.22 2.15 1.58 1.71 1.71 1.77 .1.44

Hy 0,90 16.53 0.0 0.0 010 0.0 0.0'

01 21.92 0.0 20.28 19 .60 22.14 20.72 23.08

Fo 19.13 0.0 16.68 15.35 18.42 16.72 19.45 Fa 2.79 010 3.60 4.25 3.72 4.00 3.63 Mt 4.30 3.47 4.27 4.31 4.04 4.24 4.o8 11 3»b4 3.14 3.58 3.62 3.35 3.53 3.34 Ap 1.31 0.83 1.34 i.4i 1.24 1.29 1.10

Cc 010 0.0 0.0 0.0 010 010 0.0

TTI* 27.8, 39.39 30.4 31.5 27.3 29.9 27 .0 t

^R ORIGINAL, RACE t: 82 x d^ x+ro i OF POOR QUALITY

^^l APPENDIX C NORM CALCULATIONS

^a ri

as 'wow as ^oaa mow o^ SA14PLE 216 218 220 221 222 223 226

Q 0.0 0.0 0.0 0.0 0.0 0.0 0.0

C 010 0.0 0.0 0.0 0.0 0.0 0.0 Or 8.58 9.90 12.08 7.07 6.66 10.21 3.60 Ab 12.13 11.20 23.09 15.42 21.75 19.14 19.54 An 18.84 19.76 21.24 20.38 22.49 21.62 21.87

^ La 0.0 0.0 0.0 n:n 0.0 0. 0 O:O

NQ 8.io 9.17 1.73 6.44 2.43 4.26 3.08

Di 20.00 25.68 15.51 18.83 17.17 15.69 22.55 Wo 10.00 12.84 7.75 9.42 8.59 7.84 11.27

En 8.60 9.89 5.64 8.04 7.13 6.21 9.41

Fs 1.40 2.95 2.11 1.37 1.45 1.63 1.86

Hy 010 0.0 0.0 0.0 0.0 0.0 0.0

01 24.19 16.15 17.46 22.98 21.09 20.03 21.92

Fo 20.81 12.44 12.71 19.62 17.52 15.86 18.30

Fa 3.38 3.71 4.75 3.35 3.57 4.16 3.62 m t 3.89 3.83 4.18 4.13 4.05 4.24 3.67

I1 3.10 3.00 3.43 3.42 3.31 M4 2.80 Ap 1.17 1.32 1.28 1.53 i.o6 1.27 o.98

Cc 0.0 0.0 0.0 010 0.0 010 0.0 _28.3 r e TTI* 27.4 3500 27.4 29.4- 31.9 24.9 r

ORIGINAL PAGE 15 83 OF POOR QUAL'Ty

APPENDIX C NORM CALCULATIONS

H 4J > 0 r-1 i A ^ 44 0 w a0 pq pq w .40

SAMPLE 231 232 233 241 242 244 246

010 010 0.0 0.0 6.14 0.0 0.0 C 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Or 10-31 11.16 li.22 9-74 9-17 7-80 6.56 Ab 16.64 24-71 2346 9-32 29.25 26.96 26.61 An 20.12 2;1.55 20 .33 19-54 20.48 20-32 23.49 Lc 010 000 0.0 0.0 0.0 0.0 0.0

Ne 6.02 0.86 2.47 9.94 0.0 2.14 0.0 Di 16.75 13-26 14.10 23-94 9.0 22.63 15-58 Wo 8 -38 6.63 7-05 11-97 4.50 11-31 7-79 En 6.79 4.99 5-38 9-50 3.32 7.54 6.18 Fs 1.58 1.64 1.67 2.47 1.18 3.77 1.61

Hy 0.0 0.0 0.0 0.0 18.04 010 0.91

01 21. 28 19-25 19.81 18-75 0.0 11.80 17-01 I " Fo 17.26 14.48 15-12 14.88 0.0 7-87 0-50 Fa 4.02 4.77 4.68 3-87 0.0 3-93 3-51 Mt 4.12 4.L24 4.16 4.11 3-91 3-92 4-52 Il 3.40 3.52 3.42 3.37 3-07 3608 3-90 Ap 1-38 1.44 1.43 1.29 0.94 1.34 1.42 Cc 0.0 0.0 010 000 0.0 0.0 0.0

Tlri* 31-3 35.0 35-0 27-1 42.8 34.6 31-5

.^

ORIGINAL PAGE IS OF POOR QUALIFY

,AMENAIX C NOM CALCULATIONS

4J ^44J 44 p O t rij td r1 dv 0 ([[[^tdddd no 0 w ^ P4 O Pq ^^ii ww RRw^^!!

SAMPLX 247 257 258 259 261 270 273

Q 0.0 0.0 0.0 010 010 010 0.0 ^ 1 C 010 010 010 0.0 0.0 0.0 0.0

Or 6.28 7.99 7.88 7.53 7.48 11.00 8.98 26.89 26.27 24.47 24.21 24.73 Ab 22.32 9.95 1 An 23.14 23.62 22.75 22.78 23.32 20.84 20.13

is O,O 00 0 0.0 01 0 0.0 0,0 00 0 i ^ry

g Ne 0.0 0.0 1.01 1.17 0.81 2.64 8.86 y h

Di 16.54 14.18 16.58 16,51 14.71 15 .71 28.76

Wo 8.27 7.09 8.29 8.26 7.36 7.86 14-38 En 6.45 5.74 6.58 6,69 6.14 5.85 10-99

Fs 1.82 1.35 1.71 1.56 1.22 2.Oi 3.39

Hy 0.85 1.76 0.0 0.0 0.0 000 010

01 16.48 16.42 17. 46 1 8 .16 19.25 19.35 16.28 e 4 Fo 12.85 13.16 13.86 14. 12 16.o6 14.0 12.44

Fa 3. 63 30 08 3.61 3.44 3.18 4.95 .3.84 Mt 4.50 41..52 4.52 4.46 4.49 3.82 307

^i 3.86 3,92 3.90 3.83 3 ,88 2.98 2.1W Ap 1.46 1.50 1.42 1.33 1.34 1.33 1. 28 a

Ca 0.0 0.0 0.0 0.0 000 0.0 010 31.4 32.6 x T'TI* 31.6 31.3 31.5 34.3 26.o

Thornton-Tuttle Index

a

^sM' ..t ate._ a_ i.. ,.....,. .0 ., r .,u e i .wMUwix. .hms _...1t'c xa.t.,...z1..^s....a._...L_...... _.... vv,...[....YS.WJeC2k/Lc1:^Wk4reaY.c[9^^ .iYeC.'_Su....'•t`.tL....._...C3...... _.. _ ,_ _ ...... ,. _...... _. _ ...... ^^^^^^ M ..- 4

i

(. U x

r

A P P E N D I X D

DESCRIPTION OF FELDSPAR SAMPLES ow Tom j:t

ORIGINAL. PAGE 13 OF POOR QUALITY 86

bD

ar ^ as a^ ^ .^ an a ^ ti cn O w w oU rri F„

P4 10 A 4J rd A

ra 4 b rod) 0 0 W 4a rP+ 4^ 4 k F-1 U Q d 0 0 !-1 0 q m 4 p

V v N N V ' U v v w 3 i ^I

1

U

1

N Ol N ^o N U` ri OQ r-1 u1 ON .-i low CT Cr1 ^O N ul u1 .-1 +-1 ri N W

W „-I U N AC1 N U •-1 r-1 'rr' ?C N r-1 m ..,IN ri ^+ N .4 q iS ^c^!{ >C > r^C Cn ^y N eel N .-^ ri r1 N ^ `K N x x x iC ?V 'rC x m' SIN ?C *aIN , rnl c`" 1 N N n N n n n P"1 N N N n n

s

i

wl

^ ^' '^ u'1 N'1 k^» C^ [^- OO C1^ N N N N O ri ,-1' e-1 ri .•f wi r♦ H V-4 L Cr. N. C*,. N ni N N N N N CV N N N N N N

^" ORIGINAL PAGE IS ^ ^ OF POOR QUALITY

.q

4 v^ c o

o ^43, N + .P, 'P^ ^ • w w • N N d 4

H H ul C^ CTS A

20I f^ v P, ^l

^tW ^-1 rl W N N N N N _N n n N

4 « a 4

k

M^ f . r

N -7 N co 1 N N N N w tt

z

E REFERENCES Baldridge, W. 5.,1979, Petrology and petrogenesis of Plio- Pleistocene basaltic rocks from the central Rio Grande rift, Rio Grande Rifts Tectonics and Magmatism, Robert E. Riecker edition, p. 323-3$3, Berseh, M.G, ,1.977, Petrography and Geology of the Southern West Potrillo Basalt Field, Dona.Ana County, New Mexico, unpub, Masters thesis, Univ. Texas at El Paso, 60p, Binns, R.A., Duggan, M.B., and Wilkinson, J.F.G,,1970, High Pressure Megacrysts in alkaline lavas from north, eastern New South Wales: Am. J. Sei., v. 269, p. 132- 1,68. Bult,tude, R.J,, and Green, D.H. t 1968p Experimental study at high pressures on the origin of olivine nephelinite and olivine melilite nephelinite magmas, Earth Planet Sel. Letters 3, P « 3 2 .5- 3 ( • Carmichael, J.S.E., Turner, F.J., and Verhoogan, J.,1974, Igneous Petrology, McGraw-Hill Book Company. Chapin, C.E.,1979, Evolution of the Rio Grande rift-a summary in Rio Grande Lifts Tectonics and Magmatism, Robert E. Rieker, ed.s Am. Geophys. Union spec, pub., p.195-- 208. Chapin, C.E., and Seager, W.R.,1975, Evolution of Rio Grande rift in the Socorro and Las Cruces areaes New Mexico Geol. Soo, Guidebook 26th Field Conf., Las Cruces country, p, 297-322. Cox, K.G_., Bell, J.D., and Pankhurst, R.J«,1979, The Inter- pretation of Igneous Rocks, George Allen and Unwin LTD. DeHon, R.A.,196,5,,Maare of La. Mesas New Mexico Geol. Soo. Guidebook 16th Field Conf., Southwestern New Mexico II, p. 204-209. { Fenneman, N.M.,1931, Physiography of the Western United States, McGraw-Hill., Inc., New York, 534p. x Hawley, J., and Kottlowsk, F.E.,1969 0 Quaternary geology of toe southeentral New Mexico border region in Border fs stratigraphy Symposium, F.E. Kottlowski and D.V. New Mexico Bur. Mines and Min. Res,, t Lal'vlone (eds.), Ciro. 104, p• 89-104,

r 88 89

Hoffer, J.M.,1969, Volcanic history of the Black Mountain- Santo Tomas basalts, Potrillo "volcanics, Dona Ana County, New Mexico, in Guidebook of the Border Regions N. Mex. Geol, Soc., Guidebook, 20th Field Conf., p. 108.114. ,1973, Quaternary basalts of the West Potrillo Mountains, south-central NewMexico. El Faso Geol. Soo. Guidebook 7, p. 26-32. 1976, Geology of Potrillo Basalt Field, South- central► Naw Mexico, New Mex. Bur. Mines and Min. Res., Circ. 149, 30p. Hoffer, J.M., and Hoffer, R.L.,1973I Composition and struc- tural state of feldspar inclusions from alkali olivine basalt Potrillo Basalt, southern New Mexico, G.S.A. Bull., v. 84, P. 2139-2642. Irvine, T.N., and Barager, W.R.A.,1971, A guide to the chem- ical classification of the common volcanic rocks. Canadian Jour. of Earth Sc:i., v. 8, p. 523=548. King, W.E., Hawley, J.W., Taylor, A.M., and Wilson, R.P., 1969, Hydrogeology of the Rio Grande valley and adjacent intermontane areas of southern New Mexico: Water Resources Inst., Rept. 6, New Mexico State Univ., 141p. Kuno, H.,1968, Differentiation in basalt magmas, in Basalts: the Poldervaart treatise on rocks of basaltic comp- osition: Interscience Publishers, New York, 862 p. Kuno, H., Yamasaki, K., Iida, C., and Nagashima, K.,1957, Differentiation of Hawaiian magmas: Japanese Jour. Geology Geography, v. 28, 179-218. Laughlin, A.W., Manzer, G.K., Jr., and Carden, J.R.,1974, Feldspar mea?-rysts in alkali basalts, G.S.A. Bull., v- 85, p. 413-416. Millican, R.S., 1971, Geology and petrography of the Tertiary Mt. Riley-Cox pluton, Dona Ana County, New Mexico, M.S. thesis, Univ. of Texas at El Paso 87p. Muir, I.D., and Tilley, C.E.,1961, Mugearites and their place in alkaline igneous rooks series: J. Geol., v. 69, p. 186-203.

LF- Z

3 90

Ortiz, T,S,1979, Merg orysts and Mafia and Ultramafic inclu sions of the Southern Nest Potri.11o Basalt Field, Dona Ana County, Now Mexico, unpub. Masters thesis, Univ. Texas at E'1 Paso, 95p,

Pearce, J,A., 1976, Statistical Analysis of Major Element Patterns in Basal.to, J. Petrologyp i9 ,P, 66-94. Renault, J.R. , Major-element variations in the Potrill.o, Carrixoxo, and McCartya basalt fields, New Mexicot New Mexico Bur, Mines Mineral. Resources, Ciro, 113, 22p. Ringwood, A.R., Composition and petrology of the earths mantle, MoGraw-Hill, New York, 618 p. ► 1975. Seagar, W.R.. and Morgan # P. ,1979 0 Ri o Grande rift in south- ern New Mexico, West !Texas, and M4amati.sm, Robert E. Reicker, ed.i Ana. Geoph. Union spec. Pub., p. 87- 1o6. Thornton, C.P. , and Tuttle, O.F . , !960, Chemistry of Igneous Docks 1. Differentiation Index, Amer. Jour. Saito v. 258, p. 661-684, U.S. Department of Agriculture, Climate and mani p. 1012,i941.

Warren, R.G., Ludo, A.M., and Keil, K.,1979 1 Geochemistry of lithic and single crystal inclusions in basalt and a characterization of the upper mantle-lower crust in the Engle Basin, Rio Grande rift, New Mexico in 1% o Grande Rifts Tectonics and Magmatism, Robert E. Reicker, ed.i Am. Geoph. Union spec. pub., p, 393- 415* Wilshire, H.G,, and Pike, J.E.N . 1975 Upper mantle dia irisms Evidence from analogous ► features in alpine per^dotite and ultramafic inclusions in basalt, Goal., v. 3, P. 467-470, Yoder, H.S.11973, Contemporaneous Basaltic and Rhyolitic Magmas, Amer. Minot 58, P. 153-171.

F s

A VITA

Tatum M. Sheffiled was born in ,

, the son of Rufus and Ovon Sheffield. After graduat-

ing from Nederland High School in Nederland, Texas, he entered

Latrar University at Beaumont, Texas. He received the Bachelor

of Science degree in Au g ust of 1978. In the fail of 1979, he

entered the Graduate School of the University rf Texas at El

Paso.

t

This thesis was typed by Ms. Sandy Ladewig.