The Natural Variation of a Neural Code

Total Page:16

File Type:pdf, Size:1020Kb

The Natural Variation of a Neural Code The Natural Variation of a Neural Code Yoav Kfir1,2, Ittai Renan3, Elad Schneidman4., Ronen Segev2,5*. 1 Department of Biomedical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel, 2 The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel, 3 Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel, 4 Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel, 5 Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel Abstract The way information is represented by sequences of action potentials of spiking neurons is determined by the input each neuron receives, but also by its biophysics, and the specifics of the circuit in which it is embedded. Even the ‘‘code’’ of identified neurons can vary considerably from individual to individual. Here we compared the neural codes of the identified H1 neuron in the visual systems of two families of flies, blow flies and flesh flies, and explored the effect of the sensory environment that the flies were exposed to during development on the H1 code. We found that the two families differed considerably in the temporal structure of the code, its content and energetic efficiency, as well as the temporal delay of neural response. The differences in the environmental conditions during the flies’ development had no significant effect. Our results may thus reflect an instance of a family-specific design of the neural code. They may also suggest that individual variability in information processing by this specific neuron, in terms of both form and content, is regulated genetically. Citation: Kfir Y, Renan I, Schneidman E, Segev R (2012) The Natural Variation of a Neural Code. PLoS ONE 7(3): e33149. doi:10.1371/journal.pone.0033149 Editor: Holger G. Krapp, Imperial College London, United Kingdom Received July 17, 2011; Accepted February 10, 2012; Published March 12, 2012 Copyright: ß 2012 Kfir et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Funding: This work was supported by the Israel Science Foundation, a fellowship from the Center for Complexity Sciences, the Human Frontiers Science Program, the Zlotowski Center for Neuroscience (RS), and the Minerva Foundation, the Horowitz Center for Complexity Science, the Clore Center for Biological Physics, and the Peter and Patricia Gruber Foundation (ES). The funders had no role in study design, data collection and analysis, decision to publish,or preparation of the manuscript. Competing Interests: The authors have declared that no competing interests exist. * E-mail: [email protected] . These authors contributed equally to this work. Introduction We used the identified H1 neuron in the fly visual system to study the individual nature of the neural code. H1 is a motion The nervous system relies on a nearly universal ‘‘alphabet’’: sensitive neuron that processes wide field visual motion, and is part most neurons, in different brain modules and in many different of a network that is responsible for stabilizing yaw optomotor species, use sequences of electrical spikes to represent and responses [10,11]. In each brain hemisphere there is one H1 transmit information [1]. However, the structure of this ‘‘neural neuron that responds to horizontal back to front motion and is code’’ – i.e. the way information is carried by spike trains and inhibited by backwards motion; each one of the neurons projects how it can be read – can differ even between brain areas in the to the contra-lateral hemisphere of the fly’s brain. This neuron has same animal. The similarity in anatomical and functional been widely used in the study of various properties of the neural organization of the nervous system in different individuals reflects code, including the reliability of its response, information content, the universal properties of brain design and function. However, it the temporal structure of its code and its adaptation properties is unclear how different the corresponding brain modules of two [7,12–22], and its sensitivity to the fly’s activity state [23,24]. animals are, or how they differ in terms of the computations they Within the same species, the H1 code can demonstrate both high perform. variability, and some universal properties [17]. It is also well Behavioral differences between individuals are often attributed known that sensory experience has an extensive effect on the to genetic variations between species or even between individuals, development of the fly’s peripheral visual system [25,26], which are likely to be reflected in the neural circuit architecture, although, as shown by [25], rearing flies in a dark environment synaptic connection patterns, etc. [2,3]. Sensory experience also did not affect the response of H1 to local visual stimuli in a small has a profound impact on the structure and performance of the region of the visual field. Here we focused on differences between nervous system [4]. Here we aimed at a detailed quantitative two fly families, and explored the effect of sensory experience on analysis of the differences between individuals at the level of their the structure of the neural code at the level of individuals. neural codes. The putative design of the neural code as regards efficiency in terms of energy [5,6], information content [7,8], or Results predictive value [9] has been explored in different neural systems. We expect that differences (or similarities) that are informative We analyzed the structure and content of the spiking patterns of about the ‘‘conserved’’ and idiosyncratic parts of the neural code the identified H1 neuron in 24 flies from two families - six blow could have a functional relation to behavioral differences between flies, and 18 flesh flies – responding to wide field motion stimuli. individuals, species, or families. To conduct such analyses, we need H1 is a directional selective spiking neuron in the lobula plate, a quantitative framework in which to explore neural code which is selective for wide field horizontal motion in front of the variability, which could then be related to behavioral variability. fly’s eye. We identified the H1 neuron according to its response PLoS ONE | www.plosone.org 1 March 2012 | Volume 7 | Issue 3 | e33149 Variations in the Neural Code of the H1 Neuron properties; namely, directional selectivity and spiking response to distributions of code words they used. The Jensen-Shannon (JS) wide field horizontal motion in front of the fly’s contra-lateral eye divergence [28] between two distributions, P and Q, is a (see methods). symmetrized, and bounded extension of the commonly used To compare the neural code of H1 in the two families we bred Kullback-Leibler (KL) divergence between probability distribu- blow flies (Fig. 1A, group B1, n = 6) under similar visual tions [29], and measures in bits how easy it is to tell the conditions as a group of flesh flies (group F1, n = 6). To estimate distributions apart (Fig. 2B). Recall that the KL divergence the effect of the environment on the neural code we further between P and Q is given by studied two other groups of flesh flies (six individuals each), X which were bred under different visual environments: one group PxðÞ was bred outdoors in a transparent cage (Fig. 1B, group F2), and D (P(X),Q(X))~ P(x)log ð1Þ KL 2 QxðÞ the other (F3) was bred outside but in an opaque cage, which x exposed the flies to similar natural light intensities, but no details The JS divergence between P and Q, ranges from ‘0’ which of the natural environment. indicates that the two distributions are identical, and ‘1’ when they After the flies matured, we recorded extracellularly the activity have no overlap. of H1 in response to wide field stimulation by a pattern of random horizontal motion of vertical bars (Fig. 1C). Figure 1D presents examples of the spiking patterns of the H1 neurons in eight flies 1 PzQ PzQ D (P,Q)~ D (P, )zD (Q, ) ð2Þ (two from each group), with respect to the same movie segment. JS 2 KL 2 KL 2 H1 responds with high firing rates when the horizontal motion is in the preferred direction of the neuron, whereas motion in the We then quantified the dissimilarity between the distributions of opposite direction results in almost complete silence [11]. words fly i used in response to the whole movie, and those that fly j Differences between the two families were already clear from used: their average firing rates: flesh flies had 5964 spikes/s (n = 6) and blowflies had 8665 spikes/s (n = 6). The families also clearly ÀÁ1 ÀÁ D fly ,fly ~ D P (W),P (W) , ð3Þ differed in their response latencies (Fig. 1E): blow flies were W i j N JS flyi flyj significantly delayed compared to flesh flies (,2 ms difference) and were also much more variable (the response of blow flies appears where N is the length of word W. We found that the code words of less repetitive, which we will later quantify as higher entropy the two families were 3:1+0:4 bits=s apart, whereas only 1 bit is values). However, importantly, the differences between families needed to tell them apart with certainty. Thus, given a neural were much more significant and intricate than firing rate or delay response segment of a fly, and knowing the total distribution of alone. words that the flies use, about 300 ms are needed to identify to which of the two families it belongs. The differences between the Different families use different neural vocabularies and different groups of flesh flies were less pronounced, at code 1:2+0:2 bits=s, which was similar to the difference between To systematically compare the neural code of the different flies individual flies within each of the flesh fly groups (1:3+0:2 bits=s).
Recommended publications
  • Adaptive Rescaling Maximizes Information Transmission
    Neuron, Vol. 26, 695±702, June, 2000, Copyright 2000 by Cell Press Adaptive Rescaling Maximizes Information Transmission Naama Brenner, William Bialek,* Adaptation to mean light level ensures that our visual and Rob de Ruyter van Steveninck responses are matched to the average signal in real NEC Research Institute time, thus maintaining sensitivity to the fluctuations Princeton, New Jersey 08540 around this mean. But the fluctuations themselves are intermittent, such that periods of large fluctuations are interspersed with periods of relative ªquiet.º Recent ob- Summary servations indicate that the intermittency of natural sig- nals is of a special form: statistics such as the variance Adaptation is a widespread phenomenon in nervous and correlation function are stationary over some re- systems, providing flexibility to function under varying gions, with slowly modulated parameters over larger external conditions. Here, we relate an adaptive prop- regions (Ruderman and Bialek, 1994; Nelken et al., 1999). erty of a sensory system directly to its function as a The principle of efficient coding suggests that the ner- carrier of information about input signals. We show vous system should adapt its strategy to these local that the input/output relation of a sensory system in statistical properties of the stimulus. Evidence for such a dynamic environment changes with the statistical statistical adaptation in the early stages of vision has properties of the environment. Specifically, when the been found in the fly (van Hateren, 1997) and in the dynamic range of inputs changes, the input/output vertebrate retina (Smirnakis et al., 1997), where mecha- relation rescales so as to match the dynamic range of nisms of gain control are well known (Shapley and Victor, responses to that of the inputs.
    [Show full text]
  • Lobula Plate Tangential Cells in Drosophila Melanogaster; Response Properties, Synaptic Organisation & Input Channels”
    Lobula Plate Tangential Cells in Drosophila melanogaster ; Response Properties, Synaptic Organization & Input Channels Maximilian Albert Jösch Krotki München 2009 2 Lobula Plate Tangential Cells in Drosophila melanogaster ; Response Properties, Synaptic Organization & Input Channels Dissertation Zur Erlangung des Doktorgrades der Naturwissenschaften (Dr.rer.nat.) der Fakultät für Biologie der Ludwig-Maximilians-Universität München Angefertigt am Max-Planck-Institüt für Neurobiologie, Abteilung „Neuronale Informationsverarbeitung‟ Vorgelegt von Maximilian Albert Jösch Krotki München 2009 3 Hiermit erkläre ich, daß ich die vorliegende Dissertation selbständig und ohne unerlaubte Hilfe angefertigt habe. Sämtliche Experimente wurden von mir selbst durchgeführt, außer wenn explizit auf Dritte verwiesen wird. Ich habe weder anderweitig versucht, eine Dissertation oder Teile einer Dissertation einzureichen bzw. einer Prüfungskommission vorzulegen, noch eine Doktorprüfung durchzuführen. München, den 01.10.2009 1. Gutachter: Prof. Dr. Alexander Borst 2. Gutachter: Prof. Dr. Rainer Uhl Tag der mündlichen Prüfung: 26. November 2009 4 Table of Contents Table of Contents .............................................................................................................................. 5 List of Figures ..................................................................................................................................... 8 1 Abstract ........................................................................................................................................
    [Show full text]
  • Coding of Time-Varying Signals in Spike Trains of Integrate-And-Fire Neurons with Random Threshold
    Communicated by Anthony Zador ~ Coding of Time-Varying Signals in Spike Trains of Integrate-and-Fire Neurons with Random Threshold Recently, methods of statistical estimation theory have been applied by Bialek and collaborators (1991) to reconstruct time-varying velocity signals and to investigate the processing of visual information by a di- rectionally selective motion detector in the fly's visual system, the H1 cell. We summarize here our theoretical results obtained by studying these reconstructions starting from a simple model of H1 based on ex- perimental data. Under additional technical assumptions, we derive a closed expression for the Fourier transform of the optimal reconstruc- tion filter in terms of the statistics of the stimulus and the characteris- tics of the model neuron, such as its firing rate. It is shown that linear reconstruction filters will change in a nontrivial way if the statistics of the signal or the mean firing rate of the cell changes. Analytical expressions are then derived for the mean square error in the recon- structions and the lower bound on the rate of information transmission that was estimated experimentally by Bialek et al. (1991). For plausible values of the parameters, the model is in qualitative agreement with experimental data. We show that the rate of information transmission and mean square error represent different measures of the reconstruc- tions: in particular, satisfactory reconstructions in terms of the mean square error can be achieved only using stimuli that are matched to the properties of the recorded cell. Finally, it is shown that at least for the class of models presented here, reconstruction methods can be understood as a generalization of the more familiar reverse-correlation technique.
    [Show full text]
  • Toward an Ecology of Visual Information Processing
    15_Invert_381-404.qxd 5/9/07 4:01 PM Page 381 15 Going Wild: Toward an Ecology of Visual Information Processing Jochen Zeil, Norbert Boeddeker, Jan M. Hemmi, and Wolfgang Stürzl ARC Centre of Excellence in Vision Science and Centre for Visual Sciences Research School of Biological Sciences The Australian National University Canberra ACT 2601, Australia WITH ALL OUR EXTENSIVE KNOWLEDGE OF SENSORY CODING, sensory- motor feedback loops, and motor control, we are still largely ignorant about what enables animals to be such successful autonomous agents. Even in arthropods with their tiny brains, we do not fully understand how behaviorally relevant information is acquired, filtered, and processed to guide behavior. This poses a fundamental challenge to neurobiology (e.g., see Pflüger and Menzel 1999): Most of what we know about the neural basis of visual processing, for instance, comes from experiments using well-defined simple patterns, such as black and white stripes or ran- dom dots, which were chosen to facilitate our interpretation of the neu- ronal responses. In addition, in most cases, we have no alternative but to study neurons out of context, in stripped-down organisms and in iso- lated or sliced-up brain preparations, in order to be able to measure their response properties. Neurophysiological studies have revealed a wealth of information on neurons and many of their interesting properties, but these properties are not necessarily the only ones that are relevant under natural operating conditions. Nervous systems are not general information transmission and processing devices, but they have evolved to solve specific computational tasks that are relevant to the survival and the fitness of an animal in a given environment.
    [Show full text]
  • Encoding of Motion in Real Time by the Fly Visual System Martin Egelhaaf* and Anne-Kathrin Warzecha†
    454 Encoding of motion in real time by the fly visual system Martin Egelhaaf* and Anne-Kathrin Warzecha† Direction-selective cells in the fly visual system that have large By what mechanisms, and how reliably, time-dependent receptive fields play a decisive role in encoding the time- stimuli are encoded by the nervous system is currently dependent optic flow the animal encounters during locomotion. being investigated intensively in the context of optic Recent experiments on the computations performed by these flow processing in the visual systems of various animals, cells have highlighted the significance of dendritic integration such as monkeys, pigeons and flies. The fly is highly and have addressed the role of spikes versus graded specialised to evaluate time-dependent optic flow to membrane potential changes in encoding optic flow information. control its often virtuosic visually guided orientation It is becoming increasingly clear that the way optic flow is behaviour. In the fly, it is possible to track motion infor- encoded in real time is constrained both by the computational mation processing physiologically from the retina to needs of the animal in visually guided behaviour as well as by visual orientation behaviour [3]. the specific properties of the underlying neuronal hardware. Optic flow is initially processed in the first and second Addresses visual areas of the fly’s brain by successive layers of retino- Lehrstuhl für Neurobiologie, Fakultät für Biologie, Universität Bielefeld, topically arranged columnar neurons. There is detailed Postfach 10 01 31, D-33501 Bielefeld, Germany knowledge on the first visual area, the lamina, both at the *e-mail: [email protected] ultrastructural and functional level.
    [Show full text]
  • Nerve Cells and Animal Behaviour Second Edition
    Nerve Cells and Animal Behaviour Second Edition This new edition of Nerve Cells and Animal Behaviour has been updated and expanded by Peter Simmons and David Young in order to offer a comprehensive introduction to the field of neuroethology while still maintaining the accessibility of the book to university students. Two new chapters have been added, broadening the scope of the book by describing changes in behaviour and how networks of nerve cells control behaviour. The book explains the way in which the nervous systems of animals control behaviour without assuming that the reader has any prior knowledge of neurophysiology. Using a carefully selected series of behaviour patterns, students are taken from an elementary-level introduction to a point at which sufficient detail has been assimilated to allow a satisfying insight into current research on how nervous systems control and generate behaviour. Only examples for which it has been possible to establish a clear link between the activity of particular nerve cells and a pattern of behaviour have been used. Important and possibly unfamiliar terminology is defined directly or by context when it first appears and is printed in bold type. At the end of each chapter, the authors have added a list of suggestions for further reading, and specific topics are highlighted in boxes within the text. Nerve Cells and Animal Behaviour is essential reading for undergraduate and graduate students of zoology, psychology and physiology and serves as a clear introduction to the field of neuroethology. is a Lecturer in the Department of Neurobiology, University of Newcastle upon Tyne, UK, and is a Reader in the Department of Zoology, University of Melbourne, Australia.
    [Show full text]
  • Universality and Individuality in a Neural Code
    Universality and individuality in a neural code Elad Schneidman,1;2 Naama Brenner,3 Naftali Tishby,1;3 Rob R. de Ruyter van Steveninck,3 William Bialek3 1School of Computer Science and Engineering, Center for Neural Computation and 2Department of Neurobiology, Hebrew University, Jerusalem 91904, Israel 3NEC Research Institute, 4 Independence Way, Princeton, New Jersey 08540, USA felads,[email protected], fbialek,ruyter,[email protected] Abstract The problem of neural coding is to understand how sequences of action potentials (spikes) are related to sensory stimuli, motor out- puts, or (ultimately) thoughts and intentions. One clear question is whether the same coding rules are used by different neurons, or by corresponding neurons in different individuals. We present a quantitative formulation of this problem using ideas from informa- tion theory, and apply this approach to the analysis of experiments in the fly visual system. We find significant individual differences in the structure of the code, particularly in the way that tempo- ral patterns of spikes are used to convey information beyond that available from variations in spike rate. On the other hand, all the flies in our ensemble exhibit a high coding efficiency, so that every spike carries the same amount of information in all the individuals. Thus the neural code has a quantifiable mixture of individuality and universality. 1 Introduction When two people look at the same scene, do they see the same things? This basic question in the theory of knowledge seems to be beyond the scope of experimental investigation. An accessible version of this question is whether different observers of the same sense data have the same neural representation of these data: how much of the neural code is universal, and how much is individual? Differences in the neural codes of different individuals may arise from various sources: First, different individuals may use different `vocabularies' of coding sym- bols.
    [Show full text]
  • On the Biological Plausibility of Grandmother Cells: Implications for Neural Network Theories in Psychology and Neuroscience
    Psychological Review © 2009 American Psychological Association 2009, Vol. 116, No. 1, 220–251 0033-295X/09/$12.00 DOI: 10.1037/a0014462 On the Biological Plausibility of Grandmother Cells: Implications for Neural Network Theories in Psychology and Neuroscience Jeffrey S. Bowers University of Bristol A fundamental claim associated with parallel distributed processing (PDP) theories of cognition is that knowledge is coded in a distributed manner in mind and brain. This approach rejects the claim that knowledge is coded in a localist fashion, with words, objects, and simple concepts (e.g. “dog”), that is, coded with their own dedicated representations. One of the putative advantages of this approach is that the theories are biologically plausible. Indeed, advocates of the PDP approach often highlight the close parallels between distributed representations learned in connectionist models and neural coding in brain and often dismiss localist (grandmother cell) theories as biologically implausible. The author reviews a range a data that strongly challenge this claim and shows that localist models provide a better account of single-cell recording studies. The author also contrast local and alternative distributed coding schemes (sparse and coarse coding) and argues that common rejection of grandmother cell theories in neuro- science is due to a misunderstanding about how localist models behave. The author concludes that the localist representations embedded in theories of perception and cognition are consistent with neuro- science; biology only calls into question the distributed representations often learned in PDP models. Keywords: grandmother cells, distributed representations, parallel distributed processing, localist repre- sentation, connectionism Of the many different schools of neural network modeling, that it is not a principle of neural network theories in general (cf.
    [Show full text]
  • FROM INSECTS to ROBOTS Nicolas Franceschini
    ACT Workshop on Innovative Concepts. ESA-ESTEC 28-29 January 2008. TOWARDS AUTOMATIC VISUAL GUIDANCE OF AEROSPACE VEHICLES: FROM INSECTS TO ROBOTS Nicolas Franceschini Biorobotics Movement Science Institute Centre National de la Recherche Scientifique (CNRS) and University of the Mediterranean 163, Avenue de Luminy (CP938) MARSEILLE F-13288, cedex 9, France [email protected] ABSTRACT Equipped with a less-than-one-milligram brain, insects fly autonomously in complex environments without resorting to any Radars, Ladars, Sonars or GPS. The knowledge gained during the last decades on insects’ sensory-motor abilities and the neuronal substrates involved has provided us with a rich source of inspiration for designing tomorrow’s self- guided vehicles and micro-vehicles, which are to cope with unforeseen events on the ground, in the air, under water or in space. Insects have been in the business of sensory-motor integration for more than 100 millions years. They can teach us useful tricks for designing agile autonomous vehicles at various scales. Constructing a “biorobot” first requires exactly formulating the signal processing principles at work in the animal. It gives us, in return, a unique opportunity of checking the soundness and robustness of those principles by bringing them face to face with the real physical world. Here we describe some of the visually-guided terrestrial and aerial robots we have developed on the basis of our biological findings. All these robots react to the optic flow (i.e., the angular speed of the retinal image). Optic flow is sensed onboard the robots by miniature vision sensors called Elementary Motion Detectors (EMDs).
    [Show full text]
  • Nerve Cells and Animal Behaviour, Second Edition Peter J Simmons and David Young Index More Information
    Cambridge University Press 0521627265 - Nerve Cells and Animal Behaviour, Second Edition Peter J Simmons and David Young Index More information INDEX Entries in bold type refer to pages where an important term, set in bold in the text, is defined or used for the first time. acceptance angle 89 carrier frequency 161 action potential 26 cartridge 102 active membrane 33 cell body 23, 62 adaptation, sensory 82, 105 central pattern generator 166, 177, 192 dark 92, 104 centre surround receptive field 108 light 92 cercus 71 agonist 193 chaffinch 239 amacrine cell 23 channel 29 retinal 25, 107 chemical sensitive 32 amphibians 9 voltage sensitive 30, 40, 192 amplify 105, 106 circuit 24, 42, 99, 117, 125, 140, 176, 192, analogue signals in neurons 39, 81 201, 204, 206, 211, 225 Anser 4 closed loop 17 Apis 228 cochlea 149, 158 Aplysia 202, 236 cochlea nucleus 139, 149 apposition 88 cockroach 69, 77 approach 123 coding, sensory 81, 102 arthropod 4, 22, 23, 85 coincidence detection 140, 157 association 228 collision 123 associative learning 228 command neuron 43 axon 23, 24, 26, 38, 45, 51, 62, 68, 76, 96, commissural interneurons 192 140 computer model 15, 126, 193, 209 conditional oscillator 196 back propagation 210 conditioning 230 barn owl 132 connective nerve 24 bat 129, 142 constant frequency signals 145 bee 88, 228 context 217 binocular 90 contrast 96, 102, 105, 108 bipolar neuron 51 frequency 119–20 blowfly 87, 102, 104 control systems theory 15 Brachydanio 62 corollary discharge interneuron 57 Bufo 9 cranial relay neuron 67 crayfish 44 cable properties
    [Show full text]
  • Variability in Spike Trains During Constant and Dynamic Stimulation
    R EPORTS 19. Typically, pairs of stacks of images of secondary and tertiary dendritic branches (test and control sites) Variability in Spike Trains were collected at ;15-min intervals. Images were stored digitally and analyzed offline essentially un- processed. The numbers and lengths of protrusions During Constant and Dynamic (lower limit, 0.54 mm) in a field of view (45 mmby45 mm) containing 69 6 22 mm of dendritic length were measured, keeping track of the fates of individual Stimulation structures in optical sections. The limited z-resolution of our microscope (;1.5 mm) did not allow us to reliably detect and analyze protrusions that did not Anne-Kathrin Warzecha* and Martin Egelhaaf project laterally from the dendritic shaft, resulting in an underestimate of the densities of protrusions. In a recent study, it was concluded that natural time-varying stimuli are Measurements were done in two-dimensional projec- represented more reliably in the brain than constant stimuli are. The results tions, resulting in an underestimate of the lengths of protrusions. To calculate the error resulting from presented here disagree with this conclusion, although they were obtained from projections, let r be the dendritic radius and l the the same identified neuron (H1) in the fly’s visual system. For large parts of the length of spiny protrusions. Then the length of the neuron’s activity range, the variability of the responses was very similar for projection of the protrusion—the measured length l9—is given by l95[(l 1 r) cosu –r], where u is the constant and time-varying stimuli and was considerably smaller than that in angle with respect to the horizontal.
    [Show full text]
  • Insect Inspired Visual Motion Sensing and Flying Robots
    Insect inspired visual motion sensing and flying robots Thibaut Raharijaona, Lubin Kerhuel, Julien Serres, Frédéric Roubieu, Fabien Expert, Stéphane Viollet, Franck Ruffier, Nicolas Franceschini To cite this version: Thibaut Raharijaona, Lubin Kerhuel, Julien Serres, Frédéric Roubieu, Fabien Expert, et al.. Insect inspired visual motion sensing and flying robots. Handbook of Biomimetics and Bioinspiration: 2 Electromechanical Systems, 2014, 978-981-435-4950. 10.1142/9789814354936_0022. hal-02294399 HAL Id: hal-02294399 https://hal-amu.archives-ouvertes.fr/hal-02294399 Submitted on 23 Sep 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Chapter 1 Insect Inspired Visual Motion Sensing and Bio-Inspired Flying Robots Thibaut Raharijaona, Lubin Kerhuel, Julien Serres, Frédéric Roubieu, Fabien Expert, Stéphane Viollet, Franck Ruffier and Nicolas Franceschini ∗ Aix-Marseille University, CNRS, Institute of Movement Science, Biorobotics Department, UMR7287, 13288, Marseille, France Flying insects excellently master visual motion sensing techniques. They use dedi- cated motion processing circuits at a low energy and computational costs. Thanks to observations obtained on insect visual guidance, we developed visual motion sensors and bio-inspired autopilots dedicated to flying robots. Optic flow-based visuomotor control systems have been implemented on an increasingly large num- ber of sighted autonomous robots.
    [Show full text]