Neutron Imaging at the Spallation Source SINQ
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Consortium of Swiss Academic Libraries the Consortium of Swiss Academic Libraries
Research Collection Other Conference Item Times change and we change with them: the Consortium of Swiss Academic Libraries the Consortium of Swiss Academic Libraries Author(s): Boutsiouci, Pascalia Publication Date: 2015 Permanent Link: https://doi.org/10.3929/ethz-a-010439524 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library TIMES CHANGE AND WE CHANGE WITH THEM The Consortium of Swiss Academic Libraries ICoASL – 4th International Conference of Asian Special Libraries 2015 Pascalia Boutsiouci, Seoul, April 23 of 2015 AGENDA 1 Overview Switzerland and Higher Education 2 Overview Consortium of Swiss Academic Libraries 3 Our business – range of activity 4 Cooperation with our partner libraries 5 projects © Consortium of Swiss Academic Libraries | 2015 2 Overview Switzerland 1 and Higher Education © Consortium of Swiss Academic Libraries | 2015 3 THE LANDSCAPE Switzerland lies in the heart of Europe 8.2 million people 26 cantons Four official languages Matterhorn, Zermatt (4,478 m/14,692 ft) / Image source: http://www.zermatt.ch/Media/Pressecorner/Fotodatenbank/Matterhorn/Sicht-aufs- . German (66%) Matterhorn-vom-Gornergrat . French (23%) . Italian (9%) . Rheto- Romanic (1%) Image source: http://en.wikipedia.org/wiki/Switzerland#/media/File:Europe-Switzerland.svg © Consortium of Swiss Academic Libraries | 2015 4 SWITZERLAND = CONFOEDERATIO HELVETICA = CH Federal parliamentary republic consisting of 26 cantons wth Bern as the seat of the federal authorities Germany France Liechtenstein Austria Italy Image source:http://de.wikipedia.org/wiki/Datei:Switzerland,_administrative_divisions_-_de_-_colored.svg © Consortium of Swiss Academic Libraries | 2015 5 HIGHER EDUCATION IN SWITZERLAND Official Higher Education Institutions 10 Cantonal Universities . -
Neutron Activation System for Spectral Measurements of Pulsed Ion Diode Neutron Production
Q-,? \^ <A \ SAND79-2196 Unlimited Rtlciie UC-37 #^ Neutron Activation System for Spectral Measurements of Pulsed Ion Diode Neutron Production Dwid L. Hanton, Ly(# W. Kniw 1 I. Introduction The ability to characterize neutron energy spectra is essential for the application of intense pulsed neutron sources to radiation effects simulation and fusion materials damage studies. However, the problems of neutron detection are par ticularly severe in the environment of relativistic electron beam (REB) accelerators where intense electromagnetic and bremsstrahlung x-ray pulses are generated. A system for de tecting neutrons in such a harsh radiation environment has been developed for use with Sandia's pulsed accelerators and is described in a previous report. The essential components of this system are: (1) total neutron yield detectors (Ag activation 2 counters) to determine the total number of neutrons from a pulse; (2) a fast response time, high efficiency time-of- flight (TOF) spectrometer, consisting of a shielded liquid scintillator and gated photo- multiplier of special design, to characterize the time distribution and approximate energy spectrum of the neutrons; and (3) a neutron activation system to accurately de termine the neutron energy spectrum. This integrated diagnostic system is able to provide a complete picture of the time and energy di s*-ribution of neutrons produced in a REB diode shot. However, the neutron activation system of Ref. 1 made use a Nal(Tlj well crystal 5 to detect residual activity and was severely limited in its effectiveness by coincidence sum effects. The purpose of the present report is to describe the design of a much improved neutron activation system and its application as a neutron spectrometer in a recent series of Hermes II neutron produc tion experiments. -
Treating Cancer with Proton Therapy Information for Patients and Family Members Professor Dr
Treating Cancer with Proton Therapy Information for patients and family members Professor Dr. med. Damien Charles Weber, Dear readers Head and Chairman, Proton therapy is a special kind of radiation therapy. For many years now, patients Centre for Proton Therapy suffering from certain tumour diseases have successfully undergone proton radi- ation therapy at the Paul Scherrer Institute’s Centre for Proton Therapy. This brochure is intended to give a more detailed explanation of how proton ther- apy works and provide practical information on the treatment we offer at our facil- ity. We will include a step-by-step description of the way in which we treat deep- seated tumours. We will not deal with the treatment of eye tumours in this brochure. If you have further questions on the proton therapy carried out at the Paul Scherrer Institute, please do not hesitate to address these by getting in touch with our secretaries. Contact details are provided at the end of the brochure. 2 Contents 4 Radiation against cancer 10 Physics in the service of medicine 14 Four questions for Professor Dr. Tony Lomax, Chief Medical Physicist 16 Practical information on treatment at PSI 20 Four questions for Dr. Marc Walser, Senior Radiation Oncologist 22 In good hands during treatment 28 Four questions for Lydia Lederer, Chief Radiation Therapist 30 Treating infants and children 36 Children ask a specialist about radiation 38 PSI in brief Radiation against cancer 4 Because it can be used with great ac- The most important cancer therapies curacy, proton therapy is a particularly are: sparing form of radiation treatment • surgery (operation), with lower side effects. -
Annual Report 2018 Swiss Nanoscience Institute University of Basel
EINE INITIATIVE DER UNIVERSITÄT BASEL UND DES KANTONS AARGAU Annual Report 2018 Swiss Nanoscience Institute University of Basel Swiss Nanoscience Institute University of Basel Klingelbergstrasse 82 4056 Basel Switzerland www.nanoscience.ch The Swiss Nanoscience Institute (SNI) is a research initiative of the Canton of Aargau and the University of Basel. Swiss Nanoscience Institute Klingelbergstrasse 82 4056 Basel Switzerland www.nanoscience.ch Cover: Atomic force microscopic image of “nano-bone” molecules on a gold surface. The molecule is a buil- ding block for the formation of two-dimensional organic topological insulators (Rémy Pawlak, Department of Physics, University of Basel). © Swiss Nanoscience Institute, March 2019 Content 3 Foreword 4 Swiss Nanoscience Institute — The interdisciplinary center of excellence for nanosciences in Northwestern Switzerland 6 Network 8 News from the network 14 The Paul Scherrer Institute – 30 years old and a key partner on the SNI network 16 Nano Study Program 18 Glued wounds heal better – Tino Matter wins the prize for the best master’s thesis 20 Discussing science at SmallTalk – Students organize their own symposium about the block courses 22 PhD School 24 SNI PhD School – An excellent start of a scientific career 29 Multiple awards – Daniel Riedel wins several prizes 30 SNI Professors 32 Martino Poggio studies nanowires – These tiny wires with special properties have a variety of potential applications 34 Roderick Lim researches the transport processes and mechanical properties of cells – Promising -
Three Dimensional Polarimetric Neutron Tomography of Magnetic
www.nature.com/scientificreports OPEN Three Dimensional Polarimetric Neutron Tomography of Magnetic Fields Received: 25 April 2017 Morten Sales 1, Markus Strobl 2,3, Takenao Shinohara4, Anton Tremsin5, Luise Theil Kuhn 6, Accepted: 18 January 2018 William R. B. Lionheart7, Naeem M. Desai 7, Anders Bjorholm Dahl8 & Søren Schmidt 1 Published: xx xx xxxx Through the use of Time-of-Flight Three Dimensional Polarimetric Neutron Tomography (ToF 3DPNT) we have for the frst time successfully demonstrated a technique capable of measuring and reconstructing three dimensional magnetic feld strengths and directions unobtrusively and non- destructively with the potential to probe the interior of bulk samples which is not amenable otherwise. Using a pioneering polarimetric set-up for ToF neutron instrumentation in combination with a newly developed tailored reconstruction algorithm, the magnetic feld generated by a current carrying solenoid has been measured and reconstructed, thereby providing the proof-of-principle of a technique able to reveal hitherto unobtainable information on the magnetic felds in the bulk of materials and devices, due to a high degree of penetration into many materials, including metals, and the sensitivity of neutron polarisation to magnetic felds. The technique puts the potential of the ToF time structure of pulsed neutron sources to full use in order to optimise the recorded information quality and reduce measurement time. Te spin of a neutron passing through a magnetic feld will undergo an amount of precession proportional to the strength of the magnetic feld and the time spent by the neutron in the magnetic feld. Te time is proportional to the neutron wavelength, λ, and the path length through the magnetic feld, L. -
Neutron Activation and Prompt Gamma Intensity in Ar/CO $ {2} $-Filled Neutron Detectors at the European Spallation Source
Neutron activation and prompt gamma intensity in Ar/CO2-filled neutron detectors at the European Spallation Source E. Diana,b,c,∗, K. Kanakib, R. J. Hall-Wiltonb,d, P. Zagyvaia,c, Sz. Czifrusc aHungarian Academy of Sciences, Centre for Energy Research, 1525 Budapest 114., P.O. Box 49., Hungary bEuropean Spallation Source ESS ERIC, P.O Box 176, SE-221 00 Lund, Sweden cBudapest University of Technology and Economics, Institute of Nuclear Techniques, 1111 Budapest, M}uegyetem rakpart 9. dMid-Sweden University, SE-851 70 Sundsvall, Sweden Abstract Monte Carlo simulations using MCNP6.1 were performed to study the effect of neutron activation in Ar/CO2 neutron detector counting gas. A general MCNP model was built and validated with simple analytical calculations. Simulations and calculations agree that only the 40Ar activation can have a considerable effect. It was shown that neither the prompt gamma intensity from the 40Ar neutron capture nor the produced 41Ar activity have an impact in terms of gamma dose rate around the detector and background level. Keywords: ESS, neutron detector, B4C, neutron activation, 41Ar, MCNP, Monte Carlo simulation 1. Introduction Ar/CO2 is a widely applied detector counting gas, with long history in ra- diation detection. Nowadays, the application of Ar/CO2-filled detectors is ex- tended in the field of neutron detection as well. However, the exposure of arXiv:1701.08117v2 [physics.ins-det] 16 Jun 2017 Ar/CO2 counting gas to neutron radiation carries the risk of neutron activa- tion. Therefore, detailed consideration of the effect and amount of neutron ∗Corresponding author Email address: [email protected] (E. -
ICANS XXI Dawn of High Power Neutron Sources and Science Applications
Book of Abstracts ICANS XXI Dawn of high power neutron sources and science applications 29 Sep - 3 Oct 2014, JAPAN Ibaraki Prefectural Culture Center Update : 12 Oct. 2014 Best photography in 7th Oarai Town Photo Contest. WELCOME TO ICANS XXI ICANS (International Collaboration on Advanced Neutron Sources) is a network for scientists who are involved in developing pulsed neutron sources and accelerator based spallation neutron sources. Since 1st ICANS meetings was held in 1977 at Argonne National Laboratory in the day of dawn of spallation neutron technique, ICANS has been continuously held already 20 times somewhere in the world. Now we are extremely happy to announce that the ICANS, the 21st meeting, will be held at Mito hosted by J-PARC this autumn. We have a large number of topics to be discussed, there are twelve topics, such as futuristic idea of neutron source, rapid progress in facilities, integration issues in target-moderator-development, etc. The details can be found in the agenda. The meeting has a two layered structure, one is plenary session and another is workshop. Two of them are complementary and tightly cooperate each other. In the meeting we would like to enhance "workshop style", which is an original and traditional way of ICANS. Actually 2/3 of topics will be discussed in the workshop sessions. It also will be essentially organized/ lead by the workshop chairs. Plenary session shows overall issues in a relevant workshop, whose details should be talked/discussed in the workshop. The venue for the meeting is Mito city, where the 2nd Shogun Family lived for a long period of time during Edo era from 17th to 19th century, when the Tokugawa shogunate ruled the country. -
Particle Accelerator Activities at the Paul Scherrer Institut
PSI Bericht Nr. 17-07 December 2017 Particle Accelerator Activities at the Paul Scherrer Institut Terence GARVEY Paul Scherrer Institut, Villigen, Switzerland 5232 Division of Large Research Infrastructures Invited paper presented at Les Journées Accélérateurs de la Société Française de Physique, Roscoff, 3rd – 6th October, 2017. Resumé Les Activités Accélérateur à l’Institut Paul Scherrer. L'Institut Paul Scherrer exploite deux complexes d'accélérateurs en tant que ‘centre- serveurs’ pour une grande communauté de chercheurs. Il s'agit de l'Accélérateur de Protons à Haute Intensité (HIPA) et de la Source de Lumière Suisse (SLS). HIPA est un cyclotron à protons de 590 MeV. Il sert à produire des neutrons par spallation pour la recherche en physique de la matière condensée et à produire des muons et d'autres particules secondaires pour la recherche en magnétisme et en physique des particules. Le SLS est un anneau de stockage d’électrons de 2,4 GeV utilisé comme source de rayonnement synchrotron de 3ème génération fournissant des photons pour une large gamme de disciplines scientifiques. En plus de ces deux installations, l'Institut met progressivement en service un laser à électrons libres en rayons X (SwissFEL) qui fournira aux chercheurs des impulsions femto-seconde intenses à partir d’une ligne de rayons X ‘dur’ (ARAMIS) et de rayons X ‘mou’ (ATHOS). L'Institut exploite également un cyclotron supraconductrice à 250 MeV (COMET) aux fins de la thérapie par proton. Le centre de thérapie a récemment été équipé d'un troisième « gantry » rotatif qui est en cours de mise en service. Un « upgrade » du système de radiofréquence de HIPA et des projets pour "SLS-2" seront présentés. -
An Exploration of Neutron Detection in Semiconducting Boron Carbide
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Theses, Dissertations, and Student Research: Department of Physics and Astronomy Physics and Astronomy, Department of 4-2012 An Exploration of Neutron Detection in Semiconducting Boron Carbide Nina Hong University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/physicsdiss Part of the Physics Commons Hong, Nina, "An Exploration of Neutron Detection in Semiconducting Boron Carbide" (2012). Theses, Dissertations, and Student Research: Department of Physics and Astronomy. 20. https://digitalcommons.unl.edu/physicsdiss/20 This Article is brought to you for free and open access by the Physics and Astronomy, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Theses, Dissertations, and Student Research: Department of Physics and Astronomy by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. An Exploration of Neutron Detection in Semiconducting Boron Carbide by Nina Hong A DISSERTATION Presented to the Faculty of The Graduate College of the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Doctor of Philosophy Major: Physics & Astronomy Under the Supervision of Professor Shireen Adenwalla Lincoln, Nebraska April, 2012 An Exploration of Neutron Detection in Semiconducting Boron Carbide Nina Hong, Ph.D. University of Nebraska, 2012 Advisor: Shireen Adenwalla The 3He supply problem in the U.S. has necessitated the search for alternatives for neutron detection. The neutron detection efficiency is a function of density, atomic composition, neutron absorption cross section, and thickness of the neutron capture material. The isotope 10B is one of only a handful of isotopes with a high neutron absorption cross section—3840 barns for thermal neutrons. -
Application of 3D Neutron Imaging and Tomography in Cultural Heritage Research
F1-RC-1219.1 LIMITED DISTRIBUTION International Atomic Energy Agency Coordinated Research Project on Application of 3D Neutron Imaging and Tomography in Cultural Heritage Research Report of the first Research Co-ordination Meeting Vienna, Austria 07 - 11 May 2012 Reproduced by the IAEA Vienna, Austria, 2012 NOTE The material reproduced here has been supplied by the authors and has not been edited by the IAEA. The views expressed remain the responsibility of the named authors and do not necessarily reflect those of the government(s) of the designating Member State(s). In particular, neither the IAEA nor any other organization or body sponsoring the meeting can be held responsible for this material CONTENTS 1. FOREWORD .................................................................................................................... 1 2. EXECUTIVE SUMMARY ............................................................................................... 2 3. INTRODUCTION ............................................................................................................. 3 4. CRP OBJECTIVES ........................................................................................................... 4 4.1. Objectives of the CRP ............................................................................................ 4 4.2. Objectives of 1st RCM meeting ............................................................................. 4 4.3 Working groups: .................................................................................................... -
A Novel Energy Resolved Neutron Imaging Detector Based On
A novel energy resolved neutron imaging detector based on TPX3Cam for the CSNS Jianqing Yang1,2,3, Jianrong Zhou2,3,4*, Xingfen Jiang2,3,4, Jinhao Tan2,3,5, Lianjun Zhang2,3,5, Jianjin Zhou2,3, Xiaojuan Zhou2,3,Wenqin Yang2,3,4,Yuanguang Xia2,3, Jie Chen2,3, XinLi Sun1, Quanhu Zhang1**, Zhijia Sun2,3,4***, Yuanbo Chen2,3,4 1. Xi’an Research Institute of Hi-Tech, 710025, Xian,China. 2. Spallation Neutron Source Science Center, Dongguan, 523803, Guangdong, China; 3. State Key Laboratory of Particle Detection and Electronics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China; 4. University of Chinese Academy of Sciences, Beijing 100049, China 5. Harbin Engineering University, Harbin, Heilongjiang, China, 150000 Abstract: The China Spallation Neutron Source (CSNS) operates in pulsed mode and has a high neutron flux. This provides opportunities for energy resolved neutron imaging by using the TOF (Time Of Flight) approach. An Energy resolved neutron imaging instrument (ERNI) is being built at the CSNS but significant challenges for the detector persist because it simultaneously requires a spatial resolution of less than 100 μm, as well as a microsecond-scale timing resolution. This study constructs a prototype of an energy resolved neutron imaging detector based on the fast optical camera, TPX3Cam coupled with an image intensifier. To evaluate its performance, a series of proof of principle experiments were performed in the BL20 at the CSNS to measure the spatial resolution and the neutron wavelength spectrum, and perform neutron imaging with sliced wavelengths and Bragg edge imaging of the steel sample. -
Conceptual Design Report Jülich High
General Allgemeines ual Design Report ual Design Report Concept Jülich High Brilliance Neutron Source Source Jülich High Brilliance Neutron 8 Conceptual Design Report Jülich High Brilliance Neutron Source (HBS) T. Brückel, T. Gutberlet (Eds.) J. Baggemann, S. Böhm, P. Doege, J. Fenske, M. Feygenson, A. Glavic, O. Holderer, S. Jaksch, M. Jentschel, S. Kleefisch, H. Kleines, J. Li, K. Lieutenant,P . Mastinu, E. Mauerhofer, O. Meusel, S. Pasini, H. Podlech, M. Rimmler, U. Rücker, T. Schrader, W. Schweika, M. Strobl, E. Vezhlev, J. Voigt, P. Zakalek, O. Zimmer Allgemeines / General Allgemeines / General Band / Volume 8 Band / Volume 8 ISBN 978-3-95806-501-7 ISBN 978-3-95806-501-7 T. Brückel, T. Gutberlet (Eds.) Gutberlet T. Brückel, T. Jülich High Brilliance Neutron Source (HBS) 1 100 mA proton ion source 2 70 MeV linear accelerator 5 3 Proton beam multiplexer system 5 4 Individual neutron target stations 4 5 Various instruments in the experimental halls 3 5 4 2 1 5 5 5 5 4 3 5 4 5 5 Schriften des Forschungszentrums Jülich Reihe Allgemeines / General Band / Volume 8 CONTENT I. Executive summary 7 II. Foreword 11 III. Rationale 13 1. Neutron provision 13 1.1 Reactor based fission neutron sources 14 1.2 Spallation neutron sources 15 1.3 Accelerator driven neutron sources 15 2. Neutron landscape 16 3. Baseline design 18 3.1 Comparison to existing sources 19 IV. Science case 21 1. Chemistry 24 2. Geoscience 25 3. Environment 26 4. Engineering 27 5. Information and quantum technologies 28 6. Nanotechnology 29 7. Energy technology 30 8.