Asteroid Retrieval Propulsion and Flight Dynamics Concepts
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Projekt Brána Do Vesmíru
Projekt Brána do vesmíru Hvězdárna Valašské Meziříčí, p. o. Krajská hvezdáreň v Žiline Súčasnosť a budúcnosť výskumu medziplanetárnej hmoty RNDr. Peter Vereš, PhD. University of Hawaii / Univerzita Komenského Ako sa objavila MPH ● Pôvodne iba nehybná hviezdna sféra ● Mesiac a Slnko ● Bludné planéty viditeľné voľným okom Starovek => novovek Piazzi ● 1.1.1801 ● Objekt pozorovaný 41 dní ● Stratený...predpoklad, medzi Marsom a Jupiterom ● Laplace – nemožné nájsť ● Gauss (24) vynašiel metódu, vypočítal, Ceres bol nájdený... Halley ● Kométy, odjakživa považované za poslov zlých správ, vysvetlené ako atmosferické javy ● ● ● ● Názov Kometes (dlhovlasá) ● 1577 Brahe = paralaxa, ďalej ako Mesiac ● Edmond Halley si všimol periodicitu kométy 1531, 1607, 1682 = návrat v 1758 Meteory ● Zaznamenané v -1809, - 687 (Lyridy) ● Ernst Chladni 1794 Kniha o pôvode Pallasovho železa ● 1798 Brandes, Benzenberg, paralaxa 400 meteorov, 22 spoločných ● 1803 dážď / Paríž, priznanie kozmického pôvodu ● 1833 USA dážď 20/s, LEO ● 1845/46 rozpad kométy Biela, dažde Andromedíd (72, 85, 93, 99) ● 1861 = Kirkwood, súvis rojov s kométami ● 1866 Schiaparelli: Swift-Tuttle (Perzeidy), Tempel (Leonidy) ● 1899 Adams vypočítal, že Jupiter narušil dráhu kométy, dážď nebol 1833, rytina, Leonidy 1998, foto, Leonidy, AGO Modra MPH a Slnečná sústava ● Slnko ● planéty (8) ● trpasličie planéty /Ceres, Pluto, Haumea, Makemake, Eris ● MPH = asteroidy, kométy, prach, plyn, .... Vznik a vývoj asteroidov ● -4571mil. rokov – vznik Sl. sús. ● Akrécia hmoty – nehomogenity, planetesimály, „viskózna -
ISTS-2017-D-074ⅠISSFD-2017-074
A look at the capture mechanisms of the “Temporarily Captured Asteroids” of the Earth By Hodei URRUTXUA1) and Claudio BOMBARDELLI2) 1)Astronautics Group, University of Southampton, United Kingdom 2)Space Dynamics Group, Technical University of Madrid, Spain (Received April 17th, 2017) Temporarily captured asteroids of the Earth are a newly discovered family of asteroids, which become naturally captured in the vicinity of the Earth for a limited time period. Thus, during the temporary capture these asteroids are in energetically favorable condi- tions, which makes them appealing targets for space missions to asteroids. Despite their potential interest, their capture mechanisms are not yet fully understood, and basic questions remain unanswered regarding the taxonomy of this population. The present work looks at gaining a better understanding of the key features that are relevant to the duration and nature of these asteroids, by analyzing patterns and extracting conclusions from a synthetic population of temporarily captured asteroids. Key Words: Asteroids, temporarily captured asteroids, capture dynamics, asteroid retrieval. Acronyms system. Asteroid 2006 RH120 is so far the only known mem- ber of this population, though statistical studies by Granvik et TCA : Temporarily captured asteroids al.12) support the evidence that such objects are actually com- TCO : Temporarily captured orbiters mon companions of the Earth, and thus it is expected that an TCF : Temporarily captured fly-bys increasing number of them will be found as survey technology improves.13) 1. Introduction During their temporary capture phase these asteroids are technically orbiting the Earth rather than the Sun, since their The origin of planetary satellites in the Solar System has Earth-binding energy is negative. -
Ice& Stone 2020
Ice & Stone 2020 WEEK 33: AUGUST 9-15 Presented by The Earthrise Institute # 33 Authored by Alan Hale About Ice And Stone 2020 It is my pleasure to welcome all educators, students, topics include: main-belt asteroids, near-Earth asteroids, and anybody else who might be interested, to Ice and “Great Comets,” spacecraft visits (both past and Stone 2020. This is an educational package I have put future), meteorites, and “small bodies” in popular together to cover the so-called “small bodies” of the literature and music. solar system, which in general means asteroids and comets, although this also includes the small moons of Throughout 2020 there will be various comets that are the various planets as well as meteors, meteorites, and visible in our skies and various asteroids passing by Earth interplanetary dust. Although these objects may be -- some of which are already known, some of which “small” compared to the planets of our solar system, will be discovered “in the act” -- and there will also be they are nevertheless of high interest and importance various asteroids of the main asteroid belt that are visible for several reasons, including: as well as “occultations” of stars by various asteroids visible from certain locations on Earth’s surface. Ice a) they are believed to be the “leftovers” from the and Stone 2020 will make note of these occasions and formation of the solar system, so studying them provides appearances as they take place. The “Comet Resource valuable insights into our origins, including Earth and of Center” at the Earthrise web site contains information life on Earth, including ourselves; about the brighter comets that are visible in the sky at any given time and, for those who are interested, I will b) we have learned that this process isn’t over yet, and also occasionally share information about the goings-on that there are still objects out there that can impact in my life as I observe these comets. -
Arxiv:1406.5253V1 [Astro-Ph.EP] 20 Jun 2014
Physical Properties of Near-Earth Asteroid 2011 MD M. Mommert Department of Physics and Astronomy, Northern Arizona University, PO Box 6010, Flagstaff, AZ 86011, USA D. Farnocchia Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA J. L. Hora Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS 65, Cambridge, MA 02138-1516, USA S. R. Chesley Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA D. E. Trilling Department of Physics and Astronomy, Northern Arizona University, PO Box 6010, Flagstaff, AZ 86011, USA P. W. Chodas Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA arXiv:1406.5253v1 [astro-ph.EP] 20 Jun 2014 M. Mueller SRON Netherlands Institute for Space Research, Postbus 800, 9700 AV, Groningen, The Netherlands A. W. Harris DLR Institute of Planetary Research, Rutherfordstrasse 2, 12489 Berlin, Germany H. A. Smith –2– Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS 65, Cambridge, MA 02138-1516, USA and G. G. Fazio Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS 65, Cambridge, MA 02138-1516, USA Received ; accepted accepted by ApJL –3– ABSTRACT We report on observations of near-Earth asteroid 2011 MD with the Spitzer Space Telescope. We have spent 19.9 h of observing time with channel 2 (4.5 µm) of the Infrared Array Camera and detected the target within the 2σ positional uncertainty ellipse. Using an asteroid thermophysical model and a model of non- gravitational forces acting upon the object we constrain the physical properties of 2011 MD, based on the measured flux density and available astrometry data. -
Detecting the Yarkovsky Effect Among Near-Earth Asteroids From
Detecting the Yarkovsky effect among near-Earth asteroids from astrometric data Alessio Del Vignaa,b, Laura Faggiolid, Andrea Milania, Federica Spotoc, Davide Farnocchiae, Benoit Carryf aDipartimento di Matematica, Universit`adi Pisa, Largo Bruno Pontecorvo 5, Pisa, Italy bSpace Dynamics Services s.r.l., via Mario Giuntini, Navacchio di Cascina, Pisa, Italy cIMCCE, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universits, UPMC Univ. Paris 06, Univ. Lille, 77 av. Denfert-Rochereau F-75014 Paris, France dESA SSA-NEO Coordination Centre, Largo Galileo Galilei, 1, 00044 Frascati (RM), Italy eJet Propulsion Laboratory/California Institute of Technology, 4800 Oak Grove Drive, Pasadena, 91109 CA, USA fUniversit´eCˆote d’Azur, Observatoire de la Cˆote d’Azur, CNRS, Laboratoire Lagrange, Boulevard de l’Observatoire, Nice, France Abstract We present an updated set of near-Earth asteroids with a Yarkovsky-related semi- major axis drift detected from the orbital fit to the astrometry. We find 87 reliable detections after filtering for the signal-to-noise ratio of the Yarkovsky drift esti- mate and making sure the estimate is compatible with the physical properties of the analyzed object. Furthermore, we find a list of 24 marginally significant detec- tions, for which future astrometry could result in a Yarkovsky detection. A further outcome of the filtering procedure is a list of detections that we consider spurious because unrealistic or not explicable with the Yarkovsky effect. Among the smallest asteroids of our sample, we determined four detections of solar radiation pressure, in addition to the Yarkovsky effect. As the data volume increases in the near fu- ture, our goal is to develop methods to generate very long lists of asteroids with reliably detected Yarkovsky effect, with limited amounts of case by case specific adjustments. -
Actafutura Fax: +31 71 565 8018
Acta Futura Issue 8 GTOC5: results and methods Advanced Concepts Team http://www.esa.int/act Publication: Acta Futura, Issue 8 (2014) Editor-in-chief: Duncan James Barker Associate editors: Dario Izzo Jose M. Llorens Montolio Pacôme Delva Francesco Biscani Camilla Pandolfi Guido de Croon Luís F. Simões Daniel Hennes Editorial assistant: Zivile Dalikaite Published and distributed by: Advanced Concepts Team ESTEC, European Space Research and Technology Centre 2201 AZ, Noordwijk The Netherlands www.esa.int/actafutura Fax: +31 71 565 8018 Cover image: solution submitted by The University of Texas at Austin team ISSN: 2309-1940 D.O.I.:10.2420/ACT-BOK-AF Copyright ©2014- ESA Advanced Concepts Team Typeset with X TE EX Contents Foreword to the special issue on the GTOC5 competition 7 Dario Izzo and Luís F. Simões GTOC5: Problem statement and notes on solution verification 9 Ilia S. Grigoriev and Maxim P. Zapletin GTOC5: Results from the Jet Propulsion Laboratory 21 Anastassios E. Petropoulos, Eugene P. Bonfiglio, Daniel J. Grebow, Try Lam, Jeffrey S. Parker, Juan Arrieta, Damon F. Landau, Rodney L. Anderson, Eric D. Gustafson, Gregory J. Whiffen, Paul A. Finlayson, Jon A. Sims GTOC5: Results from the Politecnico di Torino and Università di Roma Sapienza 29 Lorenzo Casalino, Dario Pastrone, Francesco Simeoni, Guido Colasurdo and Alessandro Zavoli GTOC5: Results from the Tsinghua University 37 Fanghua Jiang, Yang Chen, Yuechong Liu, Hexi Baoyin and Junfeng Li GTOC5: Results from the European Space Agency and University of Florence 45 Dario Izzo, Luís F. Simões, Chit Hong Yam, Francesco Biscani, David Di Lorenzo, Bernardetta Addis and Andrea Cassioli GTOC5: Results from the National University of Defense Technology 57 Xiao-yong Jiang, Zong-fu Luo, Yi-jun Lian and G.Tang 5 6 Acta Futura 8 (2014) 7-8 Acta DOI: 10.2420/AF08.2014.7 Futura Foreword to the special issue on the GTOC5 competition Dario Izzo ,* Luís F. -
Astrodynamics of Moving Asteroids
Astrodynamics of Moving Asteroids Damon Landau, Nathan Strange, Gregory Lantoine, Tim McElrath NASA-JPL/CalTech Copyright 2014 California Institute of Technology. Government sponsorship acknowledged. Capture a NEA into Earth orbit Redirect asteroid for a close approach of the Moon natural Most of the DV is to speed up/slow down the NEA to close approach encounter Earth near their MOID (typically a node) of NEA DB Moon Lunar gravity assist captures NEA during Earth flyby 2 2 Capture C3, km /s DV ≈ DB/DT 2 2 Single flyby captures objects from up to ~3 km /s C3 2008 HU4 example, return leg only Double flyby up to ~5 km2/s2, depends on declination Natural approach of 0.15 AU, 1.3 km2/s2 4/8/2014 2 Asteroids and DV and Mass (oh my!) Returnable mass from (10,776) currently known NEAs Returnable Mass, t Returnable Earth-Sun Lunar Earth flybys Number of NEAs Mass, t Lagrange Pts Flyby & “backflips” 2 2 C3 <1 km /s C3 <2.5 C3 <25 10–50 653 NEAs 2564 4067 50–150 62 207 827 150–300 10 16 190 300–500 6 10 75 500–1000 4 8 40 1000+ 0* 0* 10 Minimum DV (km/s) between NEA & Lunar Flyby Phase-free, circular Earth orbit*, 6 t Xe, 5 t SEP, 2000 s Isp Deimos is ~7 km/s, Phobos is ~8 km/s *circular Earth orbit → up to 300 m/s DV errors 2006 RH120 is the known exception for 1000+ t to Lagrange Pts and 2000 SG344 > 1000 t for Lunar flyby Close approaches no longer factor into the equation for high-DV NEAs 4/8/2014 3 Potential Return Opportunities, 2020s Abbreviated List • Atlas 551 Launch to Asteroid Max Return Earth Return Asteroid Return C 200 x 11k km alt., Diameter 3 Capability Escape Date Launch ~1.5 yr before 2007 UN12 4–11 m 2.2 km2/s2 500 t Jun ’17 Sep ’20 escape 2009 BD 5–13 1.7 900 Jun ‘17 Jun ’23 • 40 kW array 2009 BD 5–13 1.7 500 Jan ‘19 Jun ’23 • 3000 s Isp, 60 % eff. -
Why Atens Enjoy Enhanced Accessibility for Human Space Flight
(Preprint) AAS 11-449 WHY ATENS ENJOY ENHANCED ACCESSIBILITY FOR HUMAN SPACE FLIGHT Daniel R. Adamo* and Brent W. Barbee† Near-Earth objects can be grouped into multiple orbit classifications, among them being the Aten group, whose members have orbits crossing Earth's with semi-major axes less than 1 astronomical unit. Atens comprise well under 10% of known near-Earth objects. This is in dramatic contrast to results from recent human space flight near-Earth object accessibility studies, where the most favorable known destinations are typically almost 50% Atens. Geocentric dynamics explain this enhanced Aten accessibility and lead to an understanding of where the most accessible near-Earth objects reside. Without a com- prehensive space-based survey, however, highly accessible Atens will remain largely un- known. INTRODUCTION In the context of human space flight (HSF), the concept of near-Earth object (NEO) accessibility is highly subjective (Reference 1). Whether or not a particular NEO is accessible critically depends on mass, performance, and reliability of interplanetary HSF systems yet to be designed. Such systems would cer- tainly include propulsion and crew life support with adequate shielding from both solar flares and galactic cosmic radiation. Equally critical architecture options are relevant to NEO accessibility. These options are also far from being determined and include the number of launches supporting an HSF mission, together with whether consumables are to be pre-emplaced at the destination. Until the unknowns of HSF to NEOs come into clearer focus, the notion of relative accessibility is of great utility. Imagine a group of NEOs, each with nearly equal HSF merit determined from their individual characteristics relating to crew safety, scientific return, resource utilization, and planetary defense. -
Meteoroid Impacts Onto Asteroids: a Competitor for Yarkovsky and YORP
Meteoroid impacts onto asteroids: a competitor for Yarkovsky and YORP Paul A. Wiegert Dept. of Physics and Astronomy, The University of Western Ontario, London Ontario CANADA Submitted to Icarus July 14 2014 Abstract The impact of a meteoroid onto an asteroid transfers linear and angular mo- mentum to the larger body, which may affect its orbit and its rotational state. Here we show that the meteoroid environment of our Solar System can have an effect on small asteroids that is comparable to the Yarkovsky and Yarkovsky- O’Keefe-Radzievskii-Paddack (YORP) effects under certain conditions. The momentum content of the meteoroids themselves is expected to generate an effect much smaller than that of the Yarkovsky effect. However, momentum transport by ejecta may increase the net effective force by two orders of magni- tude for impacts into bare rock surfaces. This result is sensitive to the extrapola- tion of laboratory microcratering experiment results to real meteoroid-asteroid collisions and needs further study. If this extrapolation holds, then meteoroid impacts are more important to the dynamics of small asteroids than had previ- ously been considered. Asteroids orbiting on prograde orbits near the Earth encounter an anisotropic arXiv:1407.3714v1 [astro-ph.EP] 14 Jul 2014 meteoroid environment, including a population of particles on retrograde orbits generally accepted to be material from long-period comets spiralling inwards under Poynting-Robertson drag. High relative speed (60 km/s) impacts by me- teoroids provide a small effective drag force that decreases asteroid semimajor axes and which is independent of their rotation pole. This effect may exceed the instantaneous Yarkovsky drift at sizes near and below one meter. -
2010-2011 Top Age Group Times
USA Swimming, Inc. For Dates 9/1/2010 - 8/31/2011 Girls Age 11 50 Freestyle Short Course Yards Power Rank Time Points Name Age LSC / Club Meet Date Meet 1 24.88 906 Harnish, Courtney 11 MA York YMCA 3/11/2011 2011 MA SC Junior Olympics 2 25.18 881 Wittmer, Rachel 11 MN Aquajets Swim Team 3/11/2011 2011 MN MCA Age Group State Me 3 25.21 879 Grout, Morgan 11 IN Carmel Swim Club 3/18/2011 2011 IN Age Group State - 4 25.26 874 McGowan, Alessia 11 MR Asphalt Green Unified Aquatics 2/19/2011 2011 MR Zone Team Qualifier 5 25.41 862 Wall, Ingrid 11 FL T2 Aquatics 12/10/2010 2010 IL WILD TYR WINTER BLAST 6 25.49 855 Harvard, Laurynn 11 IL Wheaton Swim Club, Inc. 3/11/2011 2011 IL SCY ISI Age Group Cham 7 25.61 845 Vanhoven, Lexus 11 MI East Grand Rapids Aquatics 3/11/2011 2011 MI WMS/WOSC 12 & U STATE 8 25.62 845 Palochik, Victoria 11 MA Unattached 3/12/2011 2011 MA AP YMCA PA East District 9 25.64 843 Suer, Samantha 11 NI Chenango Aquatic Swim Club 4/6/2011 2011 FL CAT/NASA Showcase 10 25.65 842 Kraus, Alena 11 FL Makos Aquatics Club of Gainesville 3/26/2011 2011 FL vs. FGC All-Star Meet Girls Age 11 100 Freestyle Short Course Yards Power Rank Time Points Name Age LSC / Club Meet Date Meet 1 53.60 935 Harnish, Courtney 11 MA York YMCA 3/10/2011 2011 MA SC Junior Olympics 2 54.80 882 Grout, Morgan 11 IN Carmel Swim Club 3/18/2011 2011 IN Age Group State - 3 54.95 875 Pfeifer, Evie 11 OZ Parkway Swim Club 2/25/2011 2011 OZ Division I Champs 4 55.25 862 Palochik, Victoria 11 MA Unattached 3/10/2011 2011 MA SC Junior Olympics 5 55.26 862 Suer, Samantha 11 NI Chenango Aquatic Swim Club 3/17/2011 2011 NI - Niagara LSC Championships 6 55.40 856 Romano, Kristen 11 NI Town Wrecker Swim Team 3/17/2011 2011 NI - Niagara LSC Championships 7 55.41 855 Rongione, Isabella 11 PV The Fish 4/6/2011 2011 FL CAT/NASA Showcase 8 55.76 840 Joassaint, Britheny 11 GA Marietta Marlins, Inc 2/25/2011 2011 GA 14&U Short Course 9 55.80 839 Crouse, Eva 11 CT University Aquatic Club 3/10/2011 2011 CT Age Group Championship SCY Page 1 of 61 USA Swimming, Inc. -
Observation Campaign Status
Observation Campaign Status Paul Chodas (NEO Program Office) December 17, 2013 1 Observation Campaign Status • Discovery of NEOs continues at the same pace as in the last few years (~1000 per year). • Observation campaign discovery enhancements are in work but have not yet come online. – The DARPA Space Surveillance Telescope (SST) carried out NEO testing in this fall. More tests will be carried out in January, possibly leading to more regular operations starting in March. • Radar characterization of NEOs continues at a slightly faster pace than last year, due to higher priority for asteroids. • NEOWISE has been reactivated and is cooling down. The spacecraft will start surveying soon. • Three new ARM candidates for the Reference Mission were discovered in the last 6 months (2013 LE7, 2013 PZ6, 2013 XY20): – First two were too distant for radar characterization; the third was also distant but Arecibo will attempt to characterize it this week. – All three were too distant for ground-based IR characterization. • An attractive potential candidate was found for the Alternate Mission last month (2013 WA44), but it also was too distant for radar characterization. 2 Observation Campaign Enhancements for Discovery In Work or Potential Ops Facility V FOV lim (deg2) Improvements Date Catalina Sky Increase ML field of view 4x Late 2013 Survey: Mt. Bigelow 19.5 8 Increase MB FOV 2.5x Late 2014 Mt. Lemmon 21.5 1.2 Retune observation cadence Mid 2014 Increase NEO time to 50% Early 2014 Pan-STARRS 1 21.5 7 Current Surveys Increase NEO time to 100% Late 2014 DARPA SST 22+ 6 Additional NEO detection tests Early 2014 Palomar Transient Improve software to detect 21 7 Early 2014 Facility (PTF) streaked objects Pan-STARRS 2 22 7 Complete telescope system Late 2014 ATLAS 20 40 Entire night sky every night x2 Late 2015 FutureSurveys Vlim = limiting magnitude , FOV = Field of View 3 Nomenclature Guide • “Potential Candidate”: – Orbit parameters satisfy rough constraints on launch date, return date and total mission delta-v. -
Jjmonl 1612.Pmd
alactic Observer GJohn J. McCarthy Observatory Volume 9, No. 12 December 2016 Water - the elusive elixir of life in the cosmos - Is it even closer than we thought? The John J. McCarthy Observatory Galactic Observer New Milford High School Editorial Committee 388 Danbury Road Managing Editor New Milford, CT 06776 Bill Cloutier Phone/Voice: (860) 210-4117 Production & Design Phone/Fax: (860) 354-1595 www.mccarthyobservatory.org Allan Ostergren Website Development JJMO Staff Marc Polansky It is through their efforts that the McCarthy Observatory Technical Support has established itself as a significant educational and Bob Lambert recreational resource within the western Connecticut Dr. Parker Moreland community. Steve Allison Tom Heydenburg Steve Barone Jim Johnstone Colin Campbell Carly KleinStern Dennis Cartolano Bob Lambert Route Mike Chiarella Roger Moore Jeff Chodak Parker Moreland, PhD Bill Cloutier Allan Ostergren Doug Delisle Marc Polansky Cecilia Detrich Joe Privitera Dirk Feather Monty Robson Randy Fender Don Ross Randy Finden Gene Schilling John Gebauer Katie Shusdock Elaine Green Paul Woodell Tina Hartzell Amy Ziffer In This Issue "OUT THE WINDOW ON YOUR LEFT"............................... 3 COMMONLY USED TERMS .............................................. 17 TAURUS-LITTROW .......................................................... 3 EARTH-SUN LAGRANGE POINTS & JAMES WEBB TELESCOPE 17 OVER THE TOP ............................................................... 4 REFERENCES ON DISTANCES ........................................