Discobolul – Physical Education, Sport and Kinetotherapy Journal, Volume 59, Issue 1, 26-34 THE ROLE OF MUSCLE ACTIVATION INDEX IN MOTOR CONTROL – A THEORETICAL PRESENTATION Bogdan ANTOHE1*, Marinela RAȚĂ2, Gloria RAȚĂ2 1 National University of Physical Education and Sports, Faculty of Physical Education and Sport, Bucharest, Romania 2 “Vasile Alecsandri” University of Bacău, Faculty of Movement, Sport and Health Sciences, Bacău, Romania *Correspondence address:
[email protected] https://doi.org/10.35189/dpeskj.2020.59.1.3 Abstract. Motor control is the process by which the central nervous system regulates and coordinates muscular activity for the purpose of acquiring, learning and improving motor skills. Motor control has a hierarchical organization that starts from the peripheral sensory receptors (cutaneous, muscular, ligamentary), continues with the central sensory receptors in the spinal cord, which in turn terminate in the motor and premotor area at the level of the central nervous system. At the peripheral level, the mode of manifestation of the motor control system is achieved through the musculature, often in the form of muscle coactivation. Theoretically, muscle coactivation is presented as a process characteristic of all movements of the human body, resulting in the simultaneous contraction of two muscle groups (agonist-antagonist). The role of muscle coactivation is to improve the neuromuscular coordination, to increase the precision and stability of the movement. By calculating and knowing the value of the antagonist muscle contraction divided by the value of the agonist muscle contraction, the muscle activation index is determined. Being a qualitative assessment method of the motor control system, in performance sports, the calculation of the muscle coactivation index is particularly important because its values can provide valuable insights into the performance of athletes or the progress of the recovery process (when athletes are injured).