Free Monoids Over Semigroups in a Monoidal Category Construction and Applications
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Combinatorial Operads from Monoids Samuele Giraudo
Combinatorial operads from monoids Samuele Giraudo To cite this version: Samuele Giraudo. Combinatorial operads from monoids. Journal of Algebraic Combinatorics, Springer Verlag, 2015, 41 (2), pp.493-538. 10.1007/s10801-014-0543-4. hal-01236471 HAL Id: hal-01236471 https://hal.archives-ouvertes.fr/hal-01236471 Submitted on 1 Dec 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. COMBINATORIAL OPERADS FROM MONOIDS SAMUELE GIRAUDO Abstract. We introduce a functorial construction which, from a monoid, produces a set- operad. We obtain new (symmetric or not) operads as suboperads or quotients of the operads obtained from usual monoids such as the additive and multiplicative monoids of integers and cyclic monoids. They involve various familiar combinatorial objects: endo- functions, parking functions, packed words, permutations, planar rooted trees, trees with a fixed arity, Schröder trees, Motzkin words, integer compositions, directed animals, and segmented integer compositions. We also recover some already known (symmetric or not) operads: the magmatic operad, the associative commutative operad, the diassociative op- erad, and the triassociative operad. We provide presentations by generators and relations of all constructed nonsymmetric operads. Contents Introduction 1 1. Syntax trees and operads3 1.1. -
Arxiv:1705.02246V2 [Math.RT] 20 Nov 2019 Esyta Ulsubcategory Full a That Say [15]
WIDE SUBCATEGORIES OF d-CLUSTER TILTING SUBCATEGORIES MARTIN HERSCHEND, PETER JØRGENSEN, AND LAERTIS VASO Abstract. A subcategory of an abelian category is wide if it is closed under sums, summands, kernels, cokernels, and extensions. Wide subcategories provide a significant interface between representation theory and combinatorics. If Φ is a finite dimensional algebra, then each functorially finite wide subcategory of mod(Φ) is of the φ form φ∗ mod(Γ) in an essentially unique way, where Γ is a finite dimensional algebra and Φ −→ Γ is Φ an algebra epimorphism satisfying Tor (Γ, Γ) = 0. 1 Let F ⊆ mod(Φ) be a d-cluster tilting subcategory as defined by Iyama. Then F is a d-abelian category as defined by Jasso, and we call a subcategory of F wide if it is closed under sums, summands, d- kernels, d-cokernels, and d-extensions. We generalise the above description of wide subcategories to this setting: Each functorially finite wide subcategory of F is of the form φ∗(G ) in an essentially φ Φ unique way, where Φ −→ Γ is an algebra epimorphism satisfying Tord (Γ, Γ) = 0, and G ⊆ mod(Γ) is a d-cluster tilting subcategory. We illustrate the theory by computing the wide subcategories of some d-cluster tilting subcategories ℓ F ⊆ mod(Φ) over algebras of the form Φ = kAm/(rad kAm) . Dedicated to Idun Reiten on the occasion of her 75th birthday 1. Introduction Let d > 1 be an integer. This paper introduces and studies wide subcategories of d-abelian categories as defined by Jasso. The main examples of d-abelian categories are d-cluster tilting subcategories as defined by Iyama. -
On Universal Properties of Preadditive and Additive Categories
On universal properties of preadditive and additive categories Karoubi envelope, additive envelope and tensor product Bachelor's Thesis Mathias Ritter February 2016 II Contents 0 Introduction1 0.1 Envelope operations..............................1 0.1.1 The Karoubi envelope.........................1 0.1.2 The additive envelope of preadditive categories............2 0.2 The tensor product of categories........................2 0.2.1 The tensor product of preadditive categories.............2 0.2.2 The tensor product of additive categories...............3 0.3 Counterexamples for compatibility relations.................4 0.3.1 Karoubi envelope and additive envelope...............4 0.3.2 Additive envelope and tensor product.................4 0.3.3 Karoubi envelope and tensor product.................4 0.4 Conventions...................................5 1 Preliminaries 11 1.1 Idempotents................................... 11 1.2 A lemma on equivalences............................ 12 1.3 The tensor product of modules and linear maps............... 12 1.3.1 The tensor product of modules.................... 12 1.3.2 The tensor product of linear maps................... 19 1.4 Preadditive categories over a commutative ring................ 21 2 Envelope operations 27 2.1 The Karoubi envelope............................. 27 2.1.1 Definition and duality......................... 27 2.1.2 The Karoubi envelope respects additivity............... 30 2.1.3 The inclusion functor.......................... 33 III 2.1.4 Idempotent complete categories.................... 34 2.1.5 The Karoubi envelope is idempotent complete............ 38 2.1.6 Functoriality.............................. 40 2.1.7 The image functor........................... 46 2.1.8 Universal property........................... 48 2.1.9 Karoubi envelope for preadditive categories over a commutative ring 55 2.2 The additive envelope of preadditive categories................ 59 2.2.1 Definition and additivity....................... -
Nearly Locally Presentable Categories Are Locally Presentable Is Equivalent to Vopˇenka’S Principle
NEARLY LOCALLY PRESENTABLE CATEGORIES L. POSITSELSKI AND J. ROSICKY´ Abstract. We introduce a new class of categories generalizing locally presentable ones. The distinction does not manifest in the abelian case and, assuming Vopˇenka’s principle, the same happens in the regular case. The category of complete partial orders is the natural example of a nearly locally finitely presentable category which is not locally presentable. 1. Introduction Locally presentable categories were introduced by P. Gabriel and F. Ulmer in [6]. A category K is locally λ-presentable if it is cocomplete and has a strong generator consisting of λ-presentable objects. Here, λ is a regular cardinal and an object A is λ-presentable if its hom-functor K(A, −): K → Set preserves λ-directed colimits. A category is locally presentable if it is locally λ-presentable for some λ. This con- cept of presentability formalizes the usual practice – for instance, finitely presentable groups are precisely groups given by finitely many generators and finitely many re- lations. Locally presentable categories have many nice properties, in particular they are complete and co-wellpowered. Gabriel and Ulmer [6] also showed that one can define locally presentable categories by using just monomorphisms instead all morphisms. They defined λ-generated ob- jects as those whose hom-functor K(A, −) preserves λ-directed colimits of monomor- phisms. Again, this concept formalizes the usual practice – finitely generated groups are precisely groups admitting a finite set of generators. This leads to locally gener- ated categories, where a cocomplete category K is locally λ-generated if it has a strong arXiv:1710.10476v2 [math.CT] 2 Apr 2018 generator consisting of λ-generated objects and every object of K has only a set of strong quotients. -
An Introduction to Operad Theory
AN INTRODUCTION TO OPERAD THEORY SAIMA SAMCHUCK-SCHNARCH Abstract. We give an introduction to category theory and operad theory aimed at the undergraduate level. We first explore operads in the category of sets, and then generalize to other familiar categories. Finally, we develop tools to construct operads via generators and relations, and provide several examples of operads in various categories. Throughout, we highlight the ways in which operads can be seen to encode the properties of algebraic structures across different categories. Contents 1. Introduction1 2. Preliminary Definitions2 2.1. Algebraic Structures2 2.2. Category Theory4 3. Operads in the Category of Sets 12 3.1. Basic Definitions 13 3.2. Tree Diagram Visualizations 14 3.3. Morphisms and Algebras over Operads of Sets 17 4. General Operads 22 4.1. Basic Definitions 22 4.2. Morphisms and Algebras over General Operads 27 5. Operads via Generators and Relations 33 5.1. Quotient Operads and Free Operads 33 5.2. More Examples of Operads 38 5.3. Coloured Operads 43 References 44 1. Introduction Sets equipped with operations are ubiquitous in mathematics, and many familiar operati- ons share key properties. For instance, the addition of real numbers, composition of functions, and concatenation of strings are all associative operations with an identity element. In other words, all three are examples of monoids. Rather than working with particular examples of sets and operations directly, it is often more convenient to abstract out their common pro- perties and work with algebraic structures instead. For instance, one can prove that in any monoid, arbitrarily long products x1x2 ··· xn have an unambiguous value, and thus brackets 2010 Mathematics Subject Classification. -
AN INTRODUCTION to CATEGORY THEORY and the YONEDA LEMMA Contents Introduction 1 1. Categories 2 2. Functors 3 3. Natural Transfo
AN INTRODUCTION TO CATEGORY THEORY AND THE YONEDA LEMMA SHU-NAN JUSTIN CHANG Abstract. We begin this introduction to category theory with definitions of categories, functors, and natural transformations. We provide many examples of each construct and discuss interesting relations between them. We proceed to prove the Yoneda Lemma, a central concept in category theory, and motivate its significance. We conclude with some results and applications of the Yoneda Lemma. Contents Introduction 1 1. Categories 2 2. Functors 3 3. Natural Transformations 6 4. The Yoneda Lemma 9 5. Corollaries and Applications 10 Acknowledgments 12 References 13 Introduction Category theory is an interdisciplinary field of mathematics which takes on a new perspective to understanding mathematical phenomena. Unlike most other branches of mathematics, category theory is rather uninterested in the objects be- ing considered themselves. Instead, it focuses on the relations between objects of the same type and objects of different types. Its abstract and broad nature allows it to reach into and connect several different branches of mathematics: algebra, geometry, topology, analysis, etc. A central theme of category theory is abstraction, understanding objects by gen- eralizing rather than focusing on them individually. Similar to taxonomy, category theory offers a way for mathematical concepts to be abstracted and unified. What makes category theory more than just an organizational system, however, is its abil- ity to generate information about these abstract objects by studying their relations to each other. This ability comes from what Emily Riehl calls \arguably the most important result in category theory"[4], the Yoneda Lemma. The Yoneda Lemma allows us to formally define an object by its relations to other objects, which is central to the relation-oriented perspective taken by category theory. -
Product Systems Over Ore Monoids
Documenta Math. 1331 Product Systems over Ore Monoids Suliman Albandik and Ralf Meyer Received: August 22, 2015 Revised: October 10, 2015 Communicated by Joachim Cuntz Abstract. We interpret the Cuntz–Pimsner covariance condition as a nondegeneracy condition for representations of product systems. We show that Cuntz–Pimsner algebras over Ore monoids are con- structed through inductive limits and section algebras of Fell bundles over groups. We construct a groupoid model for the Cuntz–Pimsner algebra coming from an action of an Ore monoid on a space by topolog- ical correspondences. We characterise when this groupoid is effective or locally contracting and describe its invariant subsets and invariant measures. 2010 Mathematics Subject Classification: 46L55, 22A22 Keywords and Phrases: Crossed product; product system; Ore con- ditions; Cuntz–Pimsner algebra; correspondence; groupoid model; higher-rank graph algebra; topological graph algebra. 1. Introduction Let A and B be C∗-algebras. A correspondence from A to B is a Hilbert B-module with a nondegenerate ∗-homomorphism from A to the C∗-algebra of adjointableE operators on . It is called proper if the left A-action is by E compact operators, A K( ). If AB and BC are correspondences from A → E E E to B and from B to C, respectively, then AB B BC is a correspondence from A to C. E ⊗ E A triangle of correspondences consists of three C∗-algebras A, B, C, corre- spondences AB, AC and BC between them, and an isomorphism of corre- E E E spondences u: AB B BC AC ; that is, u is a unitary operator of Hilbert C-modules thatE also⊗ intertwinesE →E the left A-module structures. -
Partial Semigroups and Convolution Algebras
Partial Semigroups and Convolution Algebras Brijesh Dongol, Victor B F Gomes, Ian J Hayes and Georg Struth February 23, 2021 Abstract Partial Semigroups are relevant to the foundations of quantum mechanics and combina- torics as well as to interval and separation logics. Convolution algebras can be understood either as algebras of generalised binary modalities over ternary Kripke frames, in particular over partial semigroups, or as algebras of quantale-valued functions which are equipped with a convolution-style operation of multiplication that is parametrised by a ternary relation. Convolution algebras provide algebraic semantics for various substructural logics, includ- ing categorial, relevance and linear logics, for separation logic and for interval logics; they cover quantitative and qualitative applications. These mathematical components for par- tial semigroups and convolution algebras provide uniform foundations from which models of computation based on relations, program traces or pomsets, and verification components for separation or interval temporal logics can be built with little effort. Contents 1 Introductory Remarks 2 2 Partial Semigroups 3 2.1 Partial Semigroups ................................... 3 2.2 Green’s Preorders and Green’s Relations ....................... 3 2.3 Morphisms ....................................... 4 2.4 Locally Finite Partial Semigroups ........................... 5 2.5 Cancellative Partial Semigroups ............................ 5 2.6 Partial Monoids ..................................... 6 2.7 -
Irreducible Representations of Finite Monoids
U.U.D.M. Project Report 2019:11 Irreducible representations of finite monoids Christoffer Hindlycke Examensarbete i matematik, 30 hp Handledare: Volodymyr Mazorchuk Examinator: Denis Gaidashev Mars 2019 Department of Mathematics Uppsala University Irreducible representations of finite monoids Christoffer Hindlycke Contents Introduction 2 Theory 3 Finite monoids and their structure . .3 Introductory notions . .3 Cyclic semigroups . .6 Green’s relations . .7 von Neumann regularity . 10 The theory of an idempotent . 11 The five functors Inde, Coinde, Rese,Te and Ne ..................... 11 Idempotents and simple modules . 14 Irreducible representations of a finite monoid . 17 Monoid algebras . 17 Clifford-Munn-Ponizovski˘ıtheory . 20 Application 24 The symmetric inverse monoid . 24 Calculating the irreducible representations of I3 ........................ 25 Appendix: Prerequisite theory 37 Basic definitions . 37 Finite dimensional algebras . 41 Semisimple modules and algebras . 41 Indecomposable modules . 42 An introduction to idempotents . 42 1 Irreducible representations of finite monoids Christoffer Hindlycke Introduction This paper is a literature study of the 2016 book Representation Theory of Finite Monoids by Benjamin Steinberg [3]. As this book contains too much interesting material for a simple master thesis, we have narrowed our attention to chapters 1, 4 and 5. This thesis is divided into three main parts: Theory, Application and Appendix. Within the Theory chapter, we (as the name might suggest) develop the necessary theory to assist with finding irreducible representations of finite monoids. Finite monoids and their structure gives elementary definitions as regards to finite monoids, and expands on the basic theory of their structure. This part corresponds to chapter 1 in [3]. The theory of an idempotent develops just enough theory regarding idempotents to enable us to state a key result, from which the principal result later follows almost immediately. -