Publications of the Astronomical Society of the Pacific 97:138-150, February 1985

Total Page:16

File Type:pdf, Size:1020Kb

Publications of the Astronomical Society of the Pacific 97:138-150, February 1985 Publications of the Astronomical Society of the Pacific 97:138-150, February 1985 IUE AND OPTICAL SPECTRAL SCANS OF U SAGITTAL: AN ANALYSIS AND COMPARISON WITH U CEPHEI JAN J. DOBIAS AND MIREK J. PLAVEC0 Department of Astronomy, University of California, Los Angeles, California 90024 Received 1984 October 2 We have determined the effective temperatures and surface gravities of the components of U Sge, using a combination of optical spectral scans and IUE spectra. The primary component is found to be a B7.5 V star with Te{{ = 12,250 (± 250) Κ and logg = 3.9 ± 0.1. The secondary component is of spectral type G4 III-IV. The best value for distance is 295 ± 20 pc, and the color excess is E{B— V) = 0^06. Our determination of the slope of the radial curve of the secondary star at primary eclipse confirms the previous results (mainly by Tomkin) that the mass ratio is very close to 3. Com- bination with photometric solutions enables us to derive reliable system parameters, given in Table VII. One high-dispersion IUE spectrum has been studied in greater detail. We have been able to fit selected lines of Fell, Sill, and Sim assuming solar abundances. The resonance doublet of C π at 1336 Á could not be fitted and we are in- vestigating several possible explanations. The photospheric lines of the hotter component are broadened by rotation; we -1 find ürot 100 km s . We discovered emission lines of the W Serpentis type in an IUE spectrum taken in the total primary eclipse. Although the observed fluxes of these lines are very low, the powers emitted are half as strong as those seen in U Cep. This is rather surprising, since we did not find any other evidence of circumstellar matter or mass transfer activity. Key words: stars: abundance—stars: circumstellar shells—stars: eclipsing binaries—stars: emission-line—stars: individual (U Sge)—ultraviolet: spectra I. Importance of the System the Varo image tube attached to the coudé spectrograph The eclipsing binary U Sagittae (HD 181182 = of Lick Observatory. We will attempt to present a com- HR 7326 = BD+1903975) is the brightest semi- prehensive picture of the system and then discuss its re- detached eclipsing binary of the Algol type that displays lation to more active interacting binaries. total primary eclipses. It is also one of the simplest sys- II. A Review of Previous Work tems of this type, since the photometric and spectro- scopic perturbations are smaller than in most Algol vari- Although U Sge is rather free of circumstellar mate- ables. There appears to be so little circumstellar material rial, there does not exist yet a clearly defined picture of present in the system that it may be considered as nearly the system, and individual solutions differ. The first pho- dormant, i.e., probably near the end of the mass-transfer toelectric light curves were obtained in the blue and red phase. This gives an excellent opportunity to derive the colors by Irwin, but have never been published. They properties of the component stars with greater reliability were used by Kopal and Shapley (1956) to obtain the than in other Algol variables. On the other hand, an in- first good set of photometric elements. Later, the star teresting problem emerges when we compare U Sge was observed by Cester and Pucillo (1972) on the UBV with U Cephei. While the two systems are rather similar system, and by McNamara and Feltz (1976) on the in a number of characteristics, U Cep is much more ac- Strömgren four-color system. Both groups of observers tive than U Sge. Why? What parameter, or set of param- published solutions based on their observations. More- eters, causes this dichotomy? over, the same observations were subsequently redis- But perhaps the most important aspect of U Sge is cussed by Cester et al. (1977), Tsouroplis (1977), and Al- that it offers the opportunity to study the chemical com- Naimiy (1978). position of its atmosphere and to see if we can find evi- There exists a general consensus that the hotter star, of dence for abundance anomalies related to the past evolu- about the spectral type B7 V, has a fractional radius be- tion of the system, during which a large-scale mass tween or near the values 0.21-0.23, and that the frac- transfer should have occurred, if our current theories of tional radius of the cooler, G-type subgiant, lies between close-binary-star evolution are correct. or near the values 0.28-0.30. The system is totally eclips- For all these reasons, we have observed U Sge with ing and the inclination must be very near 90°; actually, the International Ultraviolet Explorer (IUE) satellite, some of the above solutions simply accept that value. with the ITS scanner of the Lick Observatory, and with The value most deviating from 90° is found in the Cester and Pucillo solution, and is 89? 3. Since the elements ob- tained by Cester et al. and by McNamara and Feltz "IUE Guest Investigator. agree very closely, we will adopt r(B) = 0.225 for the 138 © Astronomical Society of the Pacific · Provided by the NASA Astrophysics Data System U SAGITTAE 139 very nearly spherical primary component, and r(G) = metric investigations of the system by McNamara and 0.295 for the photometric radius of the secondary star. Feltz (1976) seemed to support Naftilan's result. Their The elements in both solutions agree closely except for value of the m1 index, if interpreted in the usual way, the U and u light curves. These near-ultraviolet light suggested that the secondary star in U Sge must be met- curves require systematically larger values of both frac- al-poor. Quantitatively, their result, [Fe/H] = —0.63, tional radii, and most likely indicate the presence of ad- agrees very well with Naftilan's. However, the much ditional weak radiation at the Balmer limit. The small more detailed study by Parthasarathy, Lambert, and uncertainty in inclination is not important for our work. Tomkin (1983) does not corroborate these results. They In spite of total eclipses and relatively high apparent applied spectrum synthesis to Reticon spectra obtained brightness of U Sge, the absolute parameters of the sys- near 630 nm with a much higher dispersion, 0.75 Â tem were poorly known until very recently. The primary mm-1, and found the metal abundances normal within component of U Sge is so much brighter than the sec- the observational errors; [Fe/H] = 0.0 ± 0.3. ondary star that for many years the only information on The important result of the work of Parthasarathy, the radial-velocity amplitude of the secondary star was Lambert, and Tomkin is the detection of carbon defi- the determination of the slope of this radial-velocity ciency and nitrogen overabundance in the secondary star curve at the primary eclipse by Joy (1930). Joy actually in U Sge. They applied spectrum synthesis to their Digi- gave the ratio of the slopes, expressed in terms of the con spectra of the CH lines at 4300 Â and CN lines at mass ratio: ^(B)/sJl)?(G) = 3.3. From a complete orbital 4215 Â and 3888 Â. They found that the secondary star solution for the primary star, he obtained K(B) = 67.9 is deficient in carbon, [C/Fe] = —0.5, and over- km s_1. This latter value was subsequently only slightly abundant in nitrogen, [N/Fe] = +0.5. This result not revised by McNamara (1951a) to 69.7 km s-1 (± 0.7 km only does not contradict the theory of the evolution of s-1). Thus, the implied value of K(G) would be about the Algol variables by mass transfer (Plavec 1968; Ziol- 230 km s-1. Plavec (1967a) rediscussed Joy's slope deter- kowski 1969), but actually strongly supports it. mination and concluded that the mass ratio is closer to While there is every good reason to believe that the 3.0, thereby revising K(G) down to 211 km s_1. Joy's present system of U Sge is a product of mass transfer, the spectrograms were taken with a reciprocal dispersion of present level of such activity in it is very low. In spite of only 75 Â mm-1; nevertheless, Plavec's rediscussion many attempts, emission in the optical spectrum was closely agrees with our new observations presented in seen only once: McNamara (1951b) obtained two spec- section VI, as well as with the recent accurate work of trograms on 1950 August 26, which show violet-dis- Tomkin (1979). placed emission components in the Balmer lines, in Mg π In an important development, Tomkin succeeded in 4481 Â, and Ca π Κ 3934 Â. McNamara (1951α) also no- obtaining a complete radial-velocity curve of the sec- ticed the typical asymmetries of the hydrogen absorption ondary star, using a Reticon. Tomkin measured the Na D lines, which are, however, much weaker than in U Ceph- lines, the infrared Ca π triplet, and the M g ι line at ei. Students of the light curves of U Sagittae point out 8806 Â. He derived K(G) = 209 km s_1 which, when that the secondary eclipse is anomalously deep, probably combined with McNamara's value for X(B), gives a mass because circumstellar material surrounding the primary ratio of almost exactly 3.0. Since our new slope determi- star causes additional loss of light of the secondary (Ces- nation, reported in section VI, corroborates this ratio, we ter and Puccillo 1972). The depth of the primary eclipse are confident that at long last, the absolute parameters is also variable, and McNamara and Feltz (1976) explic- of U Sge are known with an accuracy that is as good as is itly suggest the presence of a weak Balmer emisison.
Recommended publications
  • Commission 27 of the I.A.U. Information Bulletin On
    COMMISSION 27 OF THE I.A.U. INFORMATION BULLETIN ON VARIABLE STARS Nos. 2101 - 2200 1982 March - 1982 September EDITOR: B. SZEIDL, KONKOLY OBSERVATORY 1525 BUDAPEST, Box 67, HUNGARY HU ISSN 0374-0676 2101 PHOTOELECTRIC PHOTOMETRY OF THE ECLIPSING BINARY DM PERSEI C. Sezer 4 March 1982 2102 PHOTOELECTRIC OBSERVATION OF W UMa (BD +56d1400) E. Hamzaoglu, V. Keskin, T. Eker 8 March 1982 2103 PHOTOELECTRIC PHOTOMETRY OF Ap STARS IN THE GALACTIC CLUSTER NGC 2516: PRELIMINARY RESULTS P. North, F. Rufener, P. Bartholdi 8 March 1982 2104 BV PHOTOMETRY OF BETELGEUSE OCT. 1979 TO APR. 1981 K. Krisciunas 8 March 1982 2105 ON THE NOVA-LIKE OBJECTS IN THE CENTRAL REGION OF M31 A.S. Sharov 9 March 1982 2106 HD 65227: A NEW SHORT PERIOD CEPHEID OF VERY SMALL AMPLITUDE O.J. Eggen 12 March 1982 2107 1981 UBVR PHOTOMETRIC OBSERVATIONS OF ER Vul M. Zeilik, R. Elston, G. Henson, P. Schmolke, P. Smith 12 March 1982 2108 PHOTOELECTRIC OBSERVATIONS OF VW CEPHEI T. Abe 15 March 1982 2109 29 DRACONIS: A NEW VARIABLE STAR D.S. Hall, G.W. Henry, H. Louth, Th.R. Renner, S.N. Shore 17 March 1982 2110 HD 26337: A NEW RS CVn VARIABLE STAR F.C. Fekel, D.S. Hall, G.W. Henry, H.J. Landis, Th.R. Renner 17 March 1982 2111 HD 136905: A NEW RS CVn VARIABLE STAR E.W. Burke, J.E. Baker, F.C. Fekel, D.S. Hall, G.W. Henry 17 March 1982 2112 VARIABLE STARS IN THE NORTHERN LUMINOUS STARS CATALOGUES W.P. Bidelman 17 March 1982 2113 CENTRAL STAR OF PLANETARY NEBULA NGC 2346: NEW ECLIPSING BINARY L.
    [Show full text]
  • Variable Stars
    VARIABLE STARS RONALD E. MICKLE Denver, Colorado 80211 ©2001 Ronald E. Mickle ABSTRACT The objective of this paper is to research the causes for variability and identify selected stars within telescope reach. In addition, individual observations of the magnitudes (Mv) of selected variable stars were made and a plan designed for more extensive work on variable stars was developed. Variable stars are stars that vary in brightness. They can range from a thousandth of a magnitude to as much as 20 magnitudes. This range of magnitudes, referred to as amplitude variation, can have periods of variability ranging from a fraction of a second to years. Algol, one of the oldest know variables, was known to ancient astronomers to vary in brightness. Today over 30,000 variable stars are known and catalogued, and thousands more are suspected. Variable stars change their brightness for several reasons. Pulsating variables swell and shrink due to internal forces, while an eclipsing binary will dim when it is eclipsed by its binary companion. (Universe 1999; The Astrophysical Journal) Today measurements of the magnitudes of variable stars are made through visual observations using the naked eye, or instruments such as a charge- coupled device (CCD). The observations made for this paper were reported to the American Association of Variable Star Observers (AAVSO) via their website. The AAVSO website lists variable star organizations in 17 countries to which observations can be reported (AAVSO). 1. IDENTIFICATION OF STAR FIELDS Observations were made from Denver, Colorado, United States. Latitude and longitude coordinates are 40ºN, 105ºW. 1.1. EYEPIECE FIELD-OF-VIEW (FOV) AAVSO charts aid in locating the target variable.
    [Show full text]
  • Astronomy Magazine 2012 Index Subject Index
    Astronomy Magazine 2012 Index Subject Index A AAR (Adirondack Astronomy Retreat), 2:60 AAS (American Astronomical Society), 5:17 Abell 21 (Medusa Nebula; Sharpless 2-274; PK 205+14), 10:62 Abell 33 (planetary nebula), 10:23 Abell 61 (planetary nebula), 8:72 Abell 81 (IC 1454) (planetary nebula), 12:54 Abell 222 (galaxy cluster), 11:18 Abell 223 (galaxy cluster), 11:18 Abell 520 (galaxy cluster), 10:52 ACT-CL J0102-4915 (El Gordo) (galaxy cluster), 10:33 Adirondack Astronomy Retreat (AAR), 2:60 AF (Astronomy Foundation), 1:14 AKARI infrared observatory, 3:17 The Albuquerque Astronomical Society (TAAS), 6:21 Algol (Beta Persei) (variable star), 11:14 ALMA (Atacama Large Millimeter/submillimeter Array), 2:13, 5:22 Alpha Aquilae (Altair) (star), 8:58–59 Alpha Centauri (star system), possibility of manned travel to, 7:22–27 Alpha Cygni (Deneb) (star), 8:58–59 Alpha Lyrae (Vega) (star), 8:58–59 Alpha Virginis (Spica) (star), 12:71 Altair (Alpha Aquilae) (star), 8:58–59 amateur astronomy clubs, 1:14 websites to create observing charts, 3:61–63 American Astronomical Society (AAS), 5:17 Andromeda Galaxy (M31) aging Sun-like stars in, 5:22 black hole in, 6:17 close pass by Triangulum Galaxy, 10:15 collision with Milky Way, 5:47 dwarf galaxies orbiting, 3:20 Antennae (NGC 4038 and NGC 4039) (colliding galaxies), 10:46 antihydrogen, 7:18 antimatter, energy produced when matter collides with, 3:51 Apollo missions, images taken of landing sites, 1:19 Aristarchus Crater (feature on Moon), 10:60–61 Armstrong, Neil, 12:18 arsenic, found in old star, 9:15
    [Show full text]
  • Download This Issue (Pdf)
    Volume 43 Number 1 JAAVSO 2015 The Journal of the American Association of Variable Star Observers The Curious Case of ASAS J174600-2321.3: an Eclipsing Symbiotic Nova in Outburst? Light curve of ASAS J174600-2321.3, based on EROS-2, ASAS-3, and APASS data. Also in this issue... • The Early-Spectral Type W UMa Contact Binary V444 And • The δ Scuti Pulsation Periods in KIC 5197256 • UXOR Hunting among Algol Variables • Early-Time Flux Measurements of SN 2014J Obtained with Small Robotic Telescopes: Extending the AAVSO Light Curve Complete table of contents inside... The American Association of Variable Star Observers 49 Bay State Road, Cambridge, MA 02138, USA The Journal of the American Association of Variable Star Observers Editor John R. Percy Edward F. Guinan Paula Szkody University of Toronto Villanova University University of Washington Toronto, Ontario, Canada Villanova, Pennsylvania Seattle, Washington Associate Editor John B. Hearnshaw Matthew R. Templeton Elizabeth O. Waagen University of Canterbury AAVSO Christchurch, New Zealand Production Editor Nikolaus Vogt Michael Saladyga Laszlo L. Kiss Universidad de Valparaiso Konkoly Observatory Valparaiso, Chile Budapest, Hungary Editorial Board Douglas L. Welch Geoffrey C. Clayton Katrien Kolenberg McMaster University Louisiana State University Universities of Antwerp Hamilton, Ontario, Canada Baton Rouge, Louisiana and of Leuven, Belgium and Harvard-Smithsonian Center David B. Williams Zhibin Dai for Astrophysics Whitestown, Indiana Yunnan Observatories Cambridge, Massachusetts Kunming City, Yunnan, China Thomas R. Williams Ulisse Munari Houston, Texas Kosmas Gazeas INAF/Astronomical Observatory University of Athens of Padua Lee Anne M. Willson Athens, Greece Asiago, Italy Iowa State University Ames, Iowa The Council of the American Association of Variable Star Observers 2014–2015 Director Arne A.
    [Show full text]
  • Universe of Binaries, Binaries in the Universe
    Universe of Binaries, Binaries in the Universe 7-11 September 2019, Telč, Czech Republic Conference venue facility of the Masaryk University Taken from https://www.uct.muni.cz/media/3140349/skladacka_dl_en1_150dpi.pdf Taken from https://www.uct.muni.cz/media/3140349/skladacka_dl_en1_150dpi.pdf Program Friday, September 6 19:00 Welcome drink Saturday, September 7 08:45-09:00 Welcome 09:00-09:40 Kafka Citizen-scientists supporting binary star research 09:40-10:00 Zejda Pro-Am collaboration in stellar astrophysics „Made in Czech Republic“ 10:00-10:40 Kim Professional-amateur programs at Chungbuk National Observatory 10:40-11:00 Coffee/Tea Break 11:00-11:40 Teyssier Symbiotic Binaries Monitoring 11:40-12:00 Olah et al. The importance of studying active giant stars in eclipsing binaries - and the role of citizen scientists in finding them 12:00-12:40 Czismadia From CoRoT to PLATO: large photometric exoplanet space surveys for the planetary and binary star community 12:40-14:00 Lunch 14:00-14:20 Forró EBs hiding in the background: the Kepler Pixel Project 14:20-14:40 Villasenor Multiplicity properties of B-type stars from the B-star Binaries Characterisation Project 14:40-15:00 Rukmini et al. Photometric study of 61 total eclipsing contact binaries from ASAS, OGLE, HATNet, AST3 and TESS databases 15:00-15:20 Hajdu et al. Hierarchical triple star systems towards the Galactic Bulge through the OGLE's eye 15:20-15:40 Christopoulou et al. What we can learn from Eclipsing Binaries in Large Surveys: The case of EA Catalina systems 15:40-16:00 Coffee/Tea Break 16:00-16:20 Stevens & Zhou A Binary of Ice and Fire 16:20-16:40 Lalounta et al.
    [Show full text]
  • V454 Dra and V455 Ables
    Journal of the Korean Astronomical Society https://doi.org/10.5303/JKAS.2020.53.2.43 53: 43 ∼ 48, 2020 April pISSN: 1225-4614 · eISSN: 2288-890X Published under Creative Commons license CC BY-SA 4.0 http://jkas.kas.org POORLY STUDIED ECLIPSING BINARIES IN THE FIELD OF DO DRACONIS: V454 DRA AND V455 DRA Yonggi Kim1, Ivan L. Andronov2, Kateryna D. Andrych2, Joh-Na Yoon1, Kiyoung Han1, and Lidia L. Chinarova2,3 1Chungbuk National University Observatory, Chungbuk National University, 361-763, Cheongju, Korea [email protected], [email protected] 2Department \Mathematics, Physics and Astronomy", Odessa National Maritime University, 65029, Odessa, Ukraine tt [email protected], [email protected] 3Astronomical Observatory, Odessa I. I. Mechnikov National University, 65014, Odessa, Ukraine; [email protected] Received February 17, 2020; accepted February 27, 2020 Abstract: We report an analysis of two poorly studied eclipsing binary stars, GSC 04396-00605 and GSC 04395-00485 (recently named V455 Dra and V454 Dra, respectively). Photometric data of the two stars were obtained using the 1-m Korean telescope of the LOAO operated by KASI while monitoring the cataclysmic variable DO Dra in the frame of the Inter-Longitude Astronomy (ILA) project. We derived periods of 0.434914 and 0.376833 days as well as initial epochs JD 2456480.04281 and JD 2456479.0523, respectively, more accurate than previously published values by factors 9 and 6. The phenomenological characteristics of the mean light curves were determined using the New Algol Variable (NAV) algorithm. The individual times of maxima/minima (ToM) were determined using the newly developed software MAVKA, which outputs accurate parameters using \asymptotic parabola" approximations.
    [Show full text]
  • Download This Article (Pdf)
    394 Index, JAAVSO Volume 41, 2013 Index to Volume 40 Author Abachi, Romina, and John R. Percy Amplitude Variations in Pulsating Red Giants 193 Alton, Kevin B. Simultaneous CCD Photometry of Two Eclipsing Binary Stars in Pegasus—Part 1: KW Pegasi 97 Simultaneous CCD Photometry of Two Eclipsing Binary Stars in Pegasus—Part 2: BX Pegasi 227 Anon. Index to Volume 41 394 Bengtsson, Hans, and Pierre Hallsten, Anders Hemlin, Gustav Holmberg, Thomas Karlsson, Robert Wahlström, Tomas Wikander V2331 Cygni is an Algol Variable with Deep Eclipses 264 Bohlsen, Terry, in David J. W. Moriarty et al. Discovery of Pulsating Components in the Southern Eclipsing Binary Systems AW Velorum, HM Puppis, and TT Horologii 182 Broens, Eric Book Review: Scientific Writing for Young Astronomers (Sterken, ed.) 145 Caton, Dan The Astronomer Who Came in from the Cold: the Evolution of Observing Variable Stars Over Three Decades at Appalachian State’s Dark Sky Observatory (Abstract) 392 Ciocca, Marco BVRI Observations of SZ Lyncis at the EKU Observatory 134 Data Mining the OGLE-II I-band Database for Eclipsing Binary Stars 267 Collins, Donald F. Observations of an Eclipse of Bright Star b Persei by the Third Star in February 2013 (Abstract) 391 Crawford, Timothy R. Mentoring, a Shared Responsibility (Abstract) 151 de Ponthière, Pierre, and Franz-Josef Hambsch, Tom Krajci, Kenneth Menzies V784 Ophiuchi: an RR Lyrae Star With Multiple Blazhko Modulations 214 de Ponthière, Pierre, and Franz-Josef Hambsch, Tom Krajci, Patrick Wils V1820 Orionis: an RR Lyrae Star With Strong and Irregular Blazhko Effect 58 Delaney, Paul, in Yue Zhao et al.
    [Show full text]
  • Phemenological Modelling of a Group of Eclipsing Binary Stars
    Public Science Framework’s Journal Name Vol. X, No. X, 2015, pp. XX-XX http://www.aiscience.org/journal/xx Phemenological Modelling of a Group of Eclipsing Binary Stars 1, * 1 2 Ivan L. Andronov , Mariia G. Tkachenko , Lidia L. Chinarova 1 Department “High and Applied Mathematics”, Odessa National Maritime University, Odessa, Ukraine 2 Astronomical Observatory, Odessa National University, Odessa, Ukraine Abstract Phenomenological modeling of variable stars allows determination of a set of the parameters, which are needed for classification in the “General Catalogue of Variable Stars” and similar catalogs. We apply a recent method NAV (“New Algol Variable”) to eclipsing binary stars of different types. Although all periodic functions may be represented as Fourier series with an infinite number of coefficients, this is impossible for a finite number of the observations. Thus one may use a restricted Fourier series, i.e. a trigonometric polynomial (TP) of order s either for fitting the light curve, or to make a periodogram analysis. However, the number of parameters needed drastically increases with decreasing width of minimum. In the NAV algorithm, the special shape of minimum is used, so the number of parameters is limited to 10 (if the period and initial epoch are fixed) or 12 (not fixed). We illustrate the NAV method by application to a recently discovered Algol-type eclipsing variable 2MASS J11080308-6145589 (in the field of previously known variable star RS Car) and compare results to that obtained using the TP fits. For this system, the statistically optimal number of parameters is 44, but the fit is still worse than that of the NAV fit.
    [Show full text]
  • Astronomy A305 - Modern Observational Techniques Lab Assignment 7
    Astronomy A305 - Modern Observational Techniques Lab Assignment 7 Timing an Eclipse in an Algol Binary Goal: The goal of this lab assignment is to learn how to acquire and reduce time-resolved differential CCD photometry on an Algol-type eclipsing binary star. You will obtain an eclipse light curve for an Algol-type binary and determine the time of the eclipse. What to hand in: Submit a complete lab report including: • An introduction describing what an Algol binary is and what is known about the star you observed. • A description of your observing procedure and observations, including a log. • A description of your analysis procedures and plots, including error analysis. • A discussion of your observations, comparing the depth, width, timing, and character of your eclipse with the literature. An appropriate length is 3-5 typed pages, single spaced, 12-point font, with 1" margins, plus figures and tables. You may work with partners to obtain the data for the lab, but your analysis and writeup should be entirely your own. Be sure to review the general lab instructions on the "lab options" sheet. Observing Preparation Select a few stars in the table of Algol eclipsing binaries in the table below, and determine on which nights eclipses will occur. Arrange for observing on Sunrise or Sunset the night(s) you need. If you are not checked out for unassisted observing, confirm times with one of the Lab Instructors so that someone is available to help you. Because of possible problems with clouds and weather on the nights you are observing, be sure to prepare 2-3 possible targets for a given night (a primary target and two backups).
    [Show full text]
  • Phenomenological Modeling of Newly Discovered Eclipsing Binary 2MASS J18024395 + 4003309 = VSX J180243.9+400331
    Research Paper J. Astron. Space Sci. 32(2), 127-136 (2015) http://dx.doi.org/10.5140/JASS.2015.32.2.127 Phenomenological Modeling of Newly Discovered Eclipsing Binary 2MASS J18024395 + 4003309 = VSX J180243.9+400331 Ivan L. Andronov1, Yonggi Kim2,3†, Young-Hee Kim2,3, Joh-Na Yoon2,3, Lidia L. Chinarova4, Mariia G. Tkachenko1 1 Department of High and Applied Mathematics, Odessa National Maritime University, Odessa 65029, Ukraine 2Chungbuk National University Observatory, Cheongju 361-763, Korea 3Dept. of Astronomy and Space Science, Chungbuk National University, Cheongju 361-763, Korea 4Astronomical Observatory, Odessa National University, Odessa 65014, Ukraine We present a by-product of our long term photometric monitoring of cataclysmic variables. 2MASS J18024395 +4003309 = VSX J180243.9 +400331 was discovered in the field of the intermediate polar V1323 Her observed using the Korean 1-m telescope located at Mt. Lemmon, USA. An analysis of the two-color VR CCD observations of this variable covers all the phase intervals for the first time. The light curves show this object can be classified as an Algol-type variable with tidally distorted components, and an asymmetry of the maxima (the O’Connell effect). The periodogram analysis confirms the cycle numbering of Andronov et al. (2012) and for the initial approximation, the ephemeris is used as follows: Min I. BJD = 2456074.4904+0.3348837E . For phenomenological modeling, we used the trigonometric polynomial approximation of statistically optimal degree, and a recent method “NAV” (“New Algol Variable”) using local specific shapes for the eclipse. Methodological aspects and estimates of the physical parameters based on analysis of phenomenological parameters are presented.
    [Show full text]
  • Jan¿ 1906. Dr. Böberts, Algol Variable Sta/R. 123 on a Method Of
    Jan¿ 1906. Dr. Böberts, Algol Variable Sta/r. 123 On a Method of Determining the Absolute Dimensions of an Algol Variable Star. By Alex. W. Roberts, D.Sc. I. Introduction. The present paper deals with an extension of the problem of Algol variation in the direction of a determination of the absolute dimensions of a close binary star. Although the more definite and more accurate consideration of the dimensions of such systems falls more properly within the area of spectroscopic research, yet, theoretically at least, the light-curve of any eclipse variable exhibits data which when properly discussed yield a determination of the absolute size of the system. The theory that underlies this important determination is the simple one that light takes an appreciable interval of time to traverse the orbit of a binary star. A moment’s reflexion will make it evident that this circum- stance must make itself manifest as an acceleration in the apparent occurrence of both the primary and secondary maximum phases. The time of passing the primary and secondary maxima will, however, remain unchanged ; that is, the approach and recession of the component stars relative to the Earth as they revolve round one another will be translated, owing to the measurable velocity of light, into a corresponding hastening and retardation of the successive phenomena of eclipse. It will be clear, therefore, that if we had the means of ascer- taining the light-curve of an Algol variable with perfect precision and completeness, and if all the phenomena of eclipse were capable of geometrical explanation and exposition, then, at all times, the light-curve of the system under consideration would provide sufficient data for a definite determination of the absolute dimensions—size, mass, and density of the eclipsing stars.
    [Show full text]
  • Events: General Meeting
    The monthly newsletter of the Temecula Valley Astronomers Aug 2019 Events: General Meeting : Monday, August 5, 2019 at the Ronald H. Roberts Temecula Library, Room B, 30600 Pauba Rd, at 7:00 PM. On the agenda this month is “What’s Up” by Skip Southwick followed by a presentation topic : “The Road to Tranquility: One Small Step for a Man – Part 3” by Sam Pitts. Please consider helping out at one of the many Star Parties coming NASA APOD - IC 1795: The Fishhead Nebula Image Credit & Copyright: Alan Pham up over the next few months. For the latest schedule, check the Calendar on the web page. General information: Subscription to the TVA is included in the annual $25 membership (regular members) donation ($9 student; $35 family). President: Mark Baker 951-691-010 WHAT’S INSIDE THIS MONTH: <[email protected]> Vice President: Skip Southwick Cosmic Comments <[email protected]> by President Mark Baker Past President: John Garrett <[email protected]> Treasurer: Curtis Croulet <[email protected]> Looking Up Redux Secretary: Deborah Cheong <[email protected]> compiled by Clark Williams Club Librarian: Vacant Chill Out: Spot an Ice Giant in August Facebook: Tim Deardorff <[email protected]> by David Prosper Star Party Coordinator and Outreach: Deborah Cheong <[email protected]> Send newsletter submissions to Mark DiVecchio <[email protected]> by the 20th of the month for Address renewals or other correspondence to: the next month's issue. Temecula Valley Astronomers PO Box 1292 Like us on Facebook Murrieta, CA 92564 Members’ Mailing List: [email protected] Website: http://www.temeculavalleyastronomers.com/ Page 1 of 17 The monthly newsletter of the Temecula Valley Astronomers Aug 2019 Cosmic Comments by President Mark Baker July 20, 1969 was a momentous day in human history…and I’m so glad so many of us took the time to stop and celebrate that moment 50 years later.
    [Show full text]