The Plasma Physics Processes That Drive Ring Current Enhancements During Geomagnetic Storms and Substorms
Total Page:16
File Type:pdf, Size:1020Kb
The Plasma Physics Processes that Drive Ring Current Enhancements during Geomagnetic Storms and Substorms Michele Diane Cash A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2012 Robert M. Winglee, Co-Chair Erika M. Harnett, Co-Chair Michael Mc Carthy Program Authorized to Offer Degree: Department of Earth and Space Sciences University of Washington Abstract The Plasma Physics Processes that Drive Ring Current Enhancements during Geomagnetic Storms and Substorms Michele Diane Cash Chairs of the Supervisory Committee: Professor Robert Winglee Professor Erika Harnett Department of Earth and Space Sciences Geomagnetic storms result when energetic particles of solar and ionospheric origin fill Earth’s inner magnetosphere and create a strong westward current, known as the ring current. This dissertation presents results from investigating the plasma dynamics that contribute to the development of Earth’s ring current from ionospheric outflow of H+ and O+ ions, and the role of ring current enhancements in the generation of geomagnetic storms and substorms. Modeling was carried via a combined multifluid and particle approach, which enables us to resolve the small-scale dynamics that are key to particle energization within the context of the global magnetosphere. The results presented in this dissertation substantially contribute to our understanding of the development and composition of the ring current during geomagnetic storms and substorms, and offer insight into the ionospheric sources regions for ring current ions, as well as the processes through which these particles are energized, injected, and trapped within the inner magnetosphere. This thesis presents results that show how small-scale particle dynamics within the current sheet, boundary layers, and reconnection regions drive the acceleration of ring current particles within the larger global context of the magnetosphere. Small-scale structures within the magnetotail are shown to be more important in determining when particles are accelerated than the time after particles are initialized in the ionosphere. It is also found that after a period of southward IMF, in which particle energization is observed, a northerly turning of the IMF is necessary in order to trap energetic particles in orbit around the Earth and form a symmetric ring current. Asymmetries in the acceleration mechanisms between ionospheric H+ and O+ ions were observed with oxygen ions convecting duskward according to the cross-tail current and gaining more energy than protons, which moved earthward on reconnecting field lines and were accelerated closer to the plasma sheet inner boundary. TABLE OF CONTENTS LIST OF FIGURES iii LIST OF TABLES v Chapter 1: Introduction 1 1.1 Introduction to Solar-Terrestrial Physics ..................................................................3 1.1.1 Solar Wind........................................................................................................4 1.1.2 Interplanetary Magnetic Field...........................................................................5 1.1.3 Magnetosphere..................................................................................................5 1.1.4 Ionosphere.........................................................................................................8 1.1.5 Current Systems..............................................................................................10 1.2 Magnetospheric Storms and Substorms ..................................................................11 1.3 Scope of Dissertation ..............................................................................................14 Chapter 2: The Ring Current 17 2.1 Previous Modeling and Open Questions.................................................................18 2.2 Questions to be Addressed ......................................................................................24 Chapter 3: Numerical Methods 26 3.1 Multifluid Model.....................................................................................................26 3.2 Particle Tracking .....................................................................................................29 Chapter 4: Ring Current Formation during Substorm Conditions 31 4.1 Overview .................................................................................................................32 4.2 Boundary and Initial Conditions .............................................................................32 4.2.1 Particle Initialization.......................................................................................34 4.3 Particle Energization ...............................................................................................35 4.4 Northward Turning of IMF .....................................................................................45 4.5 Resolving the Thin Current Sheet ...........................................................................50 4.6 Calculated Particle Flux ..........................................................................................54 4.7 Summary .................................................................................................................58 Chapter 5: Storm Time Production of Ring Current Ions 60 5.1 Overview .................................................................................................................61 5.2 Boundary and Initial Conditions .............................................................................62 5.3 Energization and Trapping of Ring Current Ions....................................................65 5.4 Relative Contribution of Ionospheric Source Regions............................................72 5.5 Energy Density Contribution from H+ and O+ ........................................................81 5.6 Summary .................................................................................................................86 Chapter 6: Importance of Temperature Anisotropies in Ring Current Development89 6.1 Overview .................................................................................................................89 6.2 Motivation ...............................................................................................................90 6.3 Comparison of Temperature Anisotropies ..............................................................91 6.3.1 Particle Initialization.......................................................................................92 6.3.2 Moments of the Ion Distribution Function .....................................................93 6.4 Results .....................................................................................................................94 6.5 Summary ...............................................................................................................106 i Chapter 7: Space Weather Implications for Extrasolar Planets 109 7.1 Overview............................................................................................................... 109 7.2 Background........................................................................................................... 110 7.2.1 EGP Detection Methods............................................................................... 110 7.2.2 Planetary Magnetic Fields............................................................................ 110 7.2.3 Future of EGP Characterization ................................................................... 112 7.2.4 UV Stellar Continuum.................................................................................. 112 7.3 Auroral Emission from EGPs ............................................................................... 113 7.3.1 Solar System Analogues: Jupiter as a Template .......................................... 113 7.3.2 Sample of EGPs ........................................................................................... 114 7.4 Parameters and Assumptions................................................................................ 117 7.4.1 Known Planetary Parameters ....................................................................... 117 7.4.2 Unknown Planetary Parameters ................................................................... 117 7.4.3 Known Stellar Parameters............................................................................ 119 7.4.4 Unknown Stellar Parameters........................................................................ 119 7.5 Predictive Model................................................................................................... 123 7.5.1 Planetary Magnetic Dipole Moment ............................................................ 123 7.5.2 Magnetopause Distance................................................................................ 125 7.5.3 Stellar Wind Power ...................................................................................... 126 7.5.4 Auroral Brightness ....................................................................................... 127 7.5.5 Integrated Flux ............................................................................................. 128 7.5.6 Contrast Ratio............................................................................................... 129 7.6 Observing Auroral Emissions............................................................................... 129 7.6.1 UV Auroral Emissions