Identification of Epistatic Interactions Through Genome-Wide Association
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Diet-Induced Obesity Mediated by the JNK/DIO2 Signal Transduction Pathway
Downloaded from genesdev.cshlp.org on September 24, 2021 - Published by Cold Spring Harbor Laboratory Press Diet-induced obesity mediated by the JNK/DIO2 signal transduction pathway Santiago Vernia,1 Julie Cavanagh-Kyros,1,2 Tamera Barrett,1,2 Dae Young Jung,1 Jason K. Kim,1,3 and Roger J. Davis1,2,4 1Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA; 2Howard Hughes Medical Institute, Worcester, Massachusetts 01605, USA; 3Department of Medicine, Division of Endocrinology, Metabolism, and Diabetes, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA The cJun N-terminal kinase (JNK) signaling pathway is a key mediator of metabolic stress responses caused by consuming a high-fat diet, including the development of obesity. To test the role of JNK, we examined diet- induced obesity in mice with targeted ablation of Jnk genes in the anterior pituitary gland. These mice exhibited an increase in the pituitary expression of thyroid-stimulating hormone (TSH), an increase in the blood concentration of thyroid hormone (T4), increased energy expenditure, and markedly reduced obesity compared with control mice. The increased amount of pituitary TSH was caused by reduced expression of type 2 iodothyronine deiodinase (Dio2), a gene that is required for T4-mediated negative feedback regulation of TSH expression. These data establish a molecular mechanism that accounts for the regulation of energy expenditure and the development of obesity by the JNK signaling pathway. [Keywords: DIO2; JNK; obesity; pituitary gland; thyroid hormone] Supplemental material is available for this article. Received June 5, 2013; revised version accepted October 3, 2013. -
Genetic and Genomic Analysis of Hyperlipidemia, Obesity and Diabetes Using (C57BL/6J × TALLYHO/Jngj) F2 Mice
University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Nutrition Publications and Other Works Nutrition 12-19-2010 Genetic and genomic analysis of hyperlipidemia, obesity and diabetes using (C57BL/6J × TALLYHO/JngJ) F2 mice Taryn P. Stewart Marshall University Hyoung Y. Kim University of Tennessee - Knoxville, [email protected] Arnold M. Saxton University of Tennessee - Knoxville, [email protected] Jung H. Kim Marshall University Follow this and additional works at: https://trace.tennessee.edu/utk_nutrpubs Part of the Animal Sciences Commons, and the Nutrition Commons Recommended Citation BMC Genomics 2010, 11:713 doi:10.1186/1471-2164-11-713 This Article is brought to you for free and open access by the Nutrition at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Nutrition Publications and Other Works by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. Stewart et al. BMC Genomics 2010, 11:713 http://www.biomedcentral.com/1471-2164/11/713 RESEARCH ARTICLE Open Access Genetic and genomic analysis of hyperlipidemia, obesity and diabetes using (C57BL/6J × TALLYHO/JngJ) F2 mice Taryn P Stewart1, Hyoung Yon Kim2, Arnold M Saxton3, Jung Han Kim1* Abstract Background: Type 2 diabetes (T2D) is the most common form of diabetes in humans and is closely associated with dyslipidemia and obesity that magnifies the mortality and morbidity related to T2D. The genetic contribution to human T2D and related metabolic disorders is evident, and mostly follows polygenic inheritance. The TALLYHO/ JngJ (TH) mice are a polygenic model for T2D characterized by obesity, hyperinsulinemia, impaired glucose uptake and tolerance, hyperlipidemia, and hyperglycemia. -
WIPI-1 (38-W): Sc-100901
SANTA CRUZ BIOTECHNOLOGY, INC. WIPI-1 (38-W): sc-100901 BACKGROUND APPLICATIONS WIPI-1 (WD repeat domain, phosphoinositide interacting-1), also known as WIPI-1 (38-W) is recommended for detection of WIPI-1 of mouse, rat and WIPI1, ATG18 or WIPI49, is a 446 amino acid protein that localizes to cyto- human origin by Western Blotting (starting dilution 1:200, dilution range plasmic vesicles, endosomes, clathrin-coated vesicles and the trans-Golgi 1:100-1:1000), immunoprecipitation [1-2 µg per 100-500 µg of total protein network. Ubiquitously expressed with highest expression in heart, testis, (1 ml of cell lysate)] and solid phase ELISA (starting dilution 1:30, dilution placenta, pancreas and skeletal muscle, WIPI-1 is thought to play a role in range 1:30-1:3000). autophagy and may regulate protein trafficking in certain recycling pathways. Suitable for use as control antibody for WIPI-1 siRNA (h): sc-72210, WIPI-1 In addition, WIPI-1 interacts with androgen and estrogen receptors (ARs and siRNA (m): sc-72211, WIPI-1 shRNA Plasmid (h): sc-72210-SH, WIPI-1 shRNA ERs, respectively) and, through this interaction, may modify receptor function. Plasmid (m): sc-72211-SH, WIPI-1 shRNA (h) Lentiviral Particles: sc-72210-V WIPI-1 contains three WD repeats and has a 7-bladed propeller structure and WIPI-1 shRNA (m) Lentiviral Particles: sc-72211-V. with a conserved motif that facilitates its interaction with other proteins. WIPI-1 is expressed as two isoforms, designated a and b, and its expression Molecular Weight of WIPI-1: 49 kDa. -
A Family-Based Association Study of DIO2 and Children Mental Retardation in the Qinba Region of China
Journal of Human Genetics (2012) 57, 14–17 & 2012 The Japan Society of Human Genetics All rights reserved 1434-5161/12 $32.00 www.nature.com/jhg ORIGINAL ARTICLE A Family-based Association Study of DIO2 and children mental retardation in the Qinba region of China Kejin Zhang1,4, Heng Xi1,2,4, Xiying Wang1, Yale Guo3, Shaoping Huang3, Zijian Zheng2, Fuchang Zhang1,2 and Xiaocai Gao1,2 Deiodinase enzyme II (DIO2) has an important role in individuals’ thyroid hormones’ level, the development of central and peripheral nervous systems and characterized by mental retardation (MR). The DIO2 gene was genotyped by using five haplotype-tagging single-nucleotide polymorphisms (SNPs) in 157 Chinese MR high-density family pedigrees, including 452 nuclear families and 41460 persons. The single marker and haplotype analyses were performed by Family-based Association Tests (FBAT). Three SNPs had P-values o0.05 in at least one inherited model survived with the correction. Several haplotypes composed of these SNPs were also associated with MR. The in silico analyses identified that one of the SNPs, rs1388378, may be a functional SNP. However, further in vitro studies of this SNP should be considered in elucidating its effect on gene expression and the possible role in MR susceptibility. Journal of Human Genetics (2012) 57, 14–17; doi:10.1038/jhg.2011.121; published online 3 November 2011 Keywords: deiodinase enzyme II (DIO2); Family Based Association Tests (FBAT); mental retardation (MR); thyroid hormone (TH) INTRODUCTION Deiodinase enzyme II (DIO2) has an important role in the Thyroid hormone is essential for the development of the brain and conversion of pro-hormone thyroxine (T4) to the active hormone nervous system both in the basic processes of neurogenesis and the 3,5,3¢-L-triiodothyronine (T3). -
Skeletal Muscle Deiodinase Type 2 Regulation During Illness in Mice
263 Skeletal muscle deiodinase type 2 regulation during illness in mice J Kwakkel, H C van Beeren, M T Ackermans1, M C Platvoet-ter Schiphorst, E Fliers, W M Wiersinga and A Boelen Department of Endocrinology and Metabolism, 1Laboratory of Endocrinology, Department of Clinical Chemistry, Academic Medical Center, University of Amsterdam, F5-165, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands (Correspondence should be addressed to J Kwakkel; Email: [email protected]) Abstract We have previously shown that skeletal muscle deiodinase During chronic inflammation the increased muscle D2 type 2 (D2) mRNA (listed as Dio2 in MGI Database) is expression is associated with the activation of the cAMP upregulated in an animal model of acute illness. However, pathway. The normalization of D2 5 days after turpentine human studies on the expression of muscle D2 during injection coincides with increased Wsb1 and tumor illness report conflicting data. Therefore, we evaluated the necrosis factor a expression. Muscle interleukin-1b (Il1b) expression of skeletal muscle D2 and D2-regulating factors expression correlated with decreased D2 mRNA expression in two mouse models of illness that differ in timing and after S. pneumoniae infection. In conclusion, muscle D2 severity of illness: 1) turpentine-induced inflammation, and expression is differentially regulated during illness, probably 2) Streptococcus pneumoniae infection. During turpentine- related to differences in the inflammatory response and type induced inflammation, D2 mRNA and activity increased of pathology. D2 mRNA and activity increases in skeletal compared to pair-fed controls, most prominently at day 1 muscle during the acute phase of chronic inflammation and 2, whereas after S. -
Mouse Dio2 Conditional Knockout Project (CRISPR/Cas9)
https://www.alphaknockout.com Mouse Dio2 Conditional Knockout Project (CRISPR/Cas9) Objective: To create a Dio2 conditional knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Dio2 gene (NCBI Reference Sequence: NM_010050 ; Ensembl: ENSMUSG00000007682 ) is located on Mouse chromosome 12. 2 exons are identified, with the ATG start codon in exon 1 and the TAG stop codon in exon 2 (Transcript: ENSMUST00000082432). Exon 2 will be selected as conditional knockout region (cKO region). Deletion of this region should result in the loss of function of the Mouse Dio2 gene. To engineer the targeting vector, homologous arms and cKO region will be generated by PCR using BAC clone RP24-82B20 as template. Cas9, gRNA and targeting vector will be co-injected into fertilized eggs for cKO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Mice homozygous for a knock-out allele display elevated thyroxine (T4) and thyroid-stimulating hormone levels, changes in the metabolism and excretion of iodothyronines, and impaired adaptive thermogenesis. Exon 2 covers 72.18% of the coding region. Start codon is in exon 1, and stop codon is in exon 2. The size of intron 1 for 5'-loxP site insertion: 8072 bp. The size of effective cKO region: ~849 bp. The cKO region does not have any other known gene. Page 1 of 7 https://www.alphaknockout.com Overview of the Targeting Strategy gRNA region Wildtype allele T A 5' gRNA region G 3' 1 2 Targeting vector T A G Targeted allele T A G Constitutive KO allele (After Cre recombination) Legends Exon of mouse Dio2 Homology arm cKO region loxP site Page 2 of 7 https://www.alphaknockout.com Overview of the Dot Plot Window size: 10 bp Forward Reverse Complement Sequence 12 Note: The sequence of homologous arms and cKO region is aligned with itself to determine if there are tandem repeats. -
Genome-Wide Association Study of Cardiac Structure and Systolic Function in African Americans the Candidate Gene Association Resource (Care) Study Ervin R
Genome-Wide Association Study of Cardiac Structure and Systolic Function in African Americans The Candidate Gene Association Resource (CARe) Study Ervin R. Fox, University of Mississippi Solomon K. Musani, University of Mississippi Maja Barbalic, University of Texas Health Science Center Honghuang Lin, Boston University Bing Yu, University of Mississippi Kofo O. Ogunyankin, Northwestern University Nicholas L. Smith, University of Washington Abdullah Kutlar, Georgia Health Sciences University Nicole L. Glazer, Boston University Wendy S. Post, Johns Hopkins University Only first 10 authors above; see publication for full author list. Journal Title: Circulation: Cardiovascular Genetics Volume: Volume 6, Number 1 Publisher: American Heart Association | 2013-02-01, Pages 37-46 Type of Work: Article | Post-print: After Peer Review Publisher DOI: 10.1161/CIRCGENETICS.111.962365 Permanent URL: https://pid.emory.edu/ark:/25593/v8g7t Final published version: http://dx.doi.org/10.1161/CIRCGENETICS.111.962365 Copyright information: © 2013 American Heart Association, Inc. Accessed September 30, 2021 9:00 PM EDT NIH Public Access Author Manuscript Circ Cardiovasc Genet. Author manuscript; available in PMC 2014 February 01. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: Circ Cardiovasc Genet. 2013 February 1; 6(1): 37–46. doi:10.1161/CIRCGENETICS.111.962365. Genome-Wide Association Study of Cardiac Structure and Systolic Function in African Americans: The Candidate Gene Association Resource (CARe) Study Ervin R. Fox, MD1,*, Solomon K. Musani, PhD1,*, Maja Barbalic, PhD2,*, Honghuang Lin, PhD3, Bing Yu, MS1, Kofo O. Ogunyankin, MD4, Nicholas L. Smith, PhD5, Abdullah Kutlar, MD6, Nicole L. Glazer, MD3, Wendy S. -
Importance of Thyroid Hormone Level and Genetic
www.nature.com/scientificreports OPEN Importance of Thyroid Hormone level and Genetic Variations in Deiodinases for Patients after Acute Myocardial Infarction: A Longitudinal Observational Study Nijole Kazukauskiene1, Daina Skiriute2, Olivija Gustiene3, Julius Burkauskas4 ✉ , Violeta Zaliunaite5, Narseta Mickuviene6 & Julija Brozaitiene4 This study aimed to examine the infuence of thyroid hormone (TH) levels and genetic polymorphisms of deiodinases on long-term outcomes after acute myocardial infarction (AMI). In total, 290 patients who have experienced AMI were evaluated for demographic, clinical characteristics, risk factors, TH and NT-pro-BNP. Polymorphisms of TH related genes were included deiodinase 1 (DIO1) (rs11206244-C/T, rs12095080-A/G, rs2235544-A/C), deiodinase 2 (DIO2) (rs225015-G/A, rs225014-T/C) and deiodinase 3 (DIO3) (rs945006-T/G). Both all-cause and cardiac mortality was considered key outcomes. Cox regression model showed that NT-pro-BNP (HR = 2.11; 95% CI = 1.18– 3.78; p = 0.012), the frst quartile of fT3, and DIO1 gene rs12095080 were independent predictors of cardiac-related mortality (HR = 1.74; 95% CI = 1.04–2.91; p = 0.034). The DIO1 gene rs12095080 AG genotype (OR = 3.97; 95% CI = 1.45–10.89; p = 0.005) increased the risk for cardiac mortality. Lower fT3 levels and the DIO1 gene rs12095080 are both associated with cardiac-related mortality after AMI. Recent clinical research in cardiovascular disease as well as in coronary artery disease (CAD) has provided evi- dence that altered thyroid hormone (TH) metabolism, including low total triiodothyronine (T3) syndrome or pre-existing subclinical primary hypothyroidism, is an important indicator of adverse short-term and long-term outcomes, including mortality1–5. -
Primepcr™Assay Validation Report
PrimePCR™Assay Validation Report Gene Information Gene Name WD repeat domain, phosphoinositide interacting 1 Gene Symbol WIPI1 Organism Human Gene Summary WD40 repeat proteins are key components of many essential biologic functions. They regulate the assembly of multiprotein complexes by presenting a beta-propeller platform for simultaneous and reversible protein-protein interactions. Members of the WIPI subfamily of WD40 repeat proteins such as WIPI1 have a 7-bladed propeller structure and contain a conserved motif for interaction with phospholipids (Proikas-Cezanne et al. 2004 Gene Aliases ATG18, ATG18A, FLJ10055, WIPI49 RefSeq Accession No. NC_000017.10, NT_010783.15 UniGene ID Hs.463964 Ensembl Gene ID ENSG00000070540 Entrez Gene ID 55062 Assay Information Unique Assay ID qHsaCIP0030544 Assay Type Probe - Validation information is for the primer pair using SYBR® Green detection Detected Coding Transcript(s) ENST00000262139, ENST00000546360 Amplicon Context Sequence TTCTCATCATGACTGCTTCGTTTTGCCCTTCTGATTTCCACGGCACAAGATTATAG GAGGAAACTCATTCTCATCATCAAGACACACTGGTCCCGTCGCAAACTCATGTTC AGGAATAA Amplicon Length (bp) 89 Chromosome Location 17:66417908-66422280 Assay Design Intron-spanning Purification Desalted Validation Results Efficiency (%) 99 R2 0.9995 cDNA Cq 21.43 cDNA Tm (Celsius) 80.5 Page 1/5 PrimePCR™Assay Validation Report gDNA Cq 35.07 Specificity (%) 100 Information to assist with data interpretation is provided at the end of this report. Page 2/5 PrimePCR™Assay Validation Report WIPI1, Human Amplification Plot Amplification of cDNA -
Targeting Melanoma-Initiating Cells by Caffeine: in Silico and in Vitro Approaches
molecules Article Targeting Melanoma-Initiating Cells by Caffeine: In Silico and In Vitro Approaches Claudio Tabolacci 1,* , Martina Cordella 1, Stefania Rossi 1 , Marialaura Bonaccio 2 , Adriana Eramo 1, Carlo Mischiati 3 , Simone Beninati 4 , Licia Iacoviello 2,5 , Antonio Facchiano 6,† and Francesco Facchiano 1,† 1 Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; [email protected] (M.C.); [email protected] (S.R.); [email protected] (A.E.); [email protected] (F.F.) 2 Department of Epidemiology and Prevention, IRCCS Neuromed, 86077 Pozzilli, Italy; [email protected] (M.B.); [email protected] (L.I.) 3 Department of Neuroscience and Rehabilitation, School of Medicine, University of Ferrara, 44121 Ferrara, Italy; [email protected] 4 Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy; [email protected] 5 Department of Medicine and Surgery, Research Center in Epidemiology and Preventive Medicine (EPIMED), University of Insubria, 21100 Varese-Como, Italy 6 Laboratory of Molecular Oncology, IDI-IRCCS, 00167 Rome, Italy; [email protected] * Correspondence: [email protected] † These authors contributed equally to this work. Abstract: The beneficial effects of coffee on human diseases are well documented, but the molecular mechanisms of its bioactive compounds on cancer are not completely elucidated. This is likely due to the large heterogeneity of coffee preparations and different coffee-based beverages, but also to Citation: Tabolacci, C.; Cordella, M.; the choice of experimental models where proliferation, differentiation and immune responses are Rossi, S.; Bonaccio, M.; Eramo, A.; differently affected. -
Mice with Targeted Disruption of the Dio2 Gene Have
Mice with Targeted Disruption of the Dio2 Gene Have Cold-Induced Overexpression of the Uncoupling Protein 1 Gene but Fail to Increase Brown Adipose Tissue Lipogenesis and Adaptive Thermogenesis Marcelo A. Christoffolete,1 Camila C.G. Linardi,2 Lucia de Jesus,1 Katia Naomi Ebina,3 Suzy D. Carvalho,2 Miriam O. Ribeiro,4 Rogerio Rabelo,2 Cyntia Curcio,1 Luciane Martins,3 Edna T. Kimura,3 and Antonio C. Bianco1 The Dio2 gene encodes the type 2 deiodinase (D2) that activates thyroxine (T4) to 3,3,5-triiodothyronine -T3), the disruption of which (Dio2؊/؊) results in brown dequate quantities of thyroid hormone are re) adipose tissue (BAT)-specific hypothyroidism in an oth- quired for the maintenance of basal energy erwise euthyroid animal. In the present studies, cold expenditure (1,2) and are also critical for ad- exposure increased Dio2؊/؊ BAT sympathetic stimula- A justments in energy homeostasis during acute tion ϳ10-fold (normal ϳ4-fold); as a result, lipolysis, as exposure to cold, without which survival is not possible well as the mRNA levels of uncoupling protein 1, (3). These adjustments in nonshivering adaptive thermo- guanosine monophosphate reductase, and peroxisome genesis are initiated by an increase in the activity of the proliferator–activated receptor ␥ coactivator 1, in- sympathetic nervous system (SNS). In human newborns creased well above the levels detected in the cold- ؊/؊ and other small mammals, brown adipose tissue (BAT) is exposed wild-type animals. The sustained Dio2 BAT the main site of the sympathetic-mediated adaptive ther- adrenergic hyperresponse suppressed the three- to mogenesis. During cold exposure, there is an acute ϳ50- fourfold stimulation of BAT lipogenesis normally seen fold increase in type 2 iodothyronine deiodinase (D2) after 24–48 h in the cold. -
Molecular Cloning, Expression and Radiation Hybrid Mapping of the Bovine Deiodinase Type II (DIO2) and Deiodinase Type III (DIO3) Genes1
SHORT COMMUNICATION doi:10.1111/j.1365-2052.2005.01282.x Molecular cloning, expression and radiation hybrid mapping of the bovine deiodinase type II (DIO2) and deiodinase type III (DIO3) genes1 E. E. Connor*, E. C. Laiakis*, V. M. Fernandes*, J. L. Williams† and A. V. Capuco* *Beltsville Agricultural Research Center, ARS, USDA, 10300 Baltimore Ave., Beltsville, MD 20705, USA. †Roslin Institute (Edinburgh), Roslin, Midlothian EH25 9PS, UK Summary Thyroid hormones play a critical role in mammalian development and metabolism. Their activity is regulated in a complex, tissue-specific manner by three isoforms of deiodinases. The goal of this study was to sequence the full-length bovine type II deiodinase (DIO2) and type III deiodinase (DIO3) cDNAs and characterize mRNA expression levels of each of the three deiodinase isoforms in several bovine tissues. Sequencing of bovine DIO2 and DIO3 cDNAs revealed a high degree of predicted amino acid sequence identity with their orthologs in other mammalian species and demonstrated the conservation of selenocysteine residues within the catalytic domains of both bovine proteins. Bovine DIO2 and DIO3 were posi- tioned on chromosomes 10 and 21, respectively, by radiation hybrid mapping. Expression patterns of the three deiodinase isoforms were similar for deiodinase type I (DIO1) and DIO2 to those observed in other species. Expression level of DIO3 transcripts was greatest in mammary gland and kidney, although low-level expression was detected in most tissues sampled. Results of this work will aid in the study of deiodinase gene expression and thyroid hormone regulation in cattle. Keywords deiodinase, gene expression, gene mapping, thyroid hormone metabolism.